The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively ...The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration(SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used Had ISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in Had ISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km^(2) in March and 1.5 mln km^(2) in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
Studying the Arctic sea ice contributes to a comprehensive understanding of the climate system in polar regions and offers valuable insights into the interplay between polar climate change and the global climate and e...Studying the Arctic sea ice contributes to a comprehensive understanding of the climate system in polar regions and offers valuable insights into the interplay between polar climate change and the global climate and environment.One of the key research aspects is the investigation of the temperature,salinity,and density parameters of sea ice to obtain essential insights.During the 11th Chinese National Arctic Research Expedition,acoustic velocity was measured on an ice core at a short-term ice station,however,temperature,salinity,and density were not measured.In the present work,we utilized a genetic algorithm to invert these obtained acoustic velocity data to sea ice temperature,salinity,and density parameters on the basis of the relationship between acoustic velocity and the physical properties of Arctic summer sea ice.We validated the effectiveness of this inversion procedure by comparing its findings with those of other researchers.The results indicate that within the normalized depth range of 0.43-0.94,the ranges for temperature,salinity,and density are -0.48--0.29℃,1.63-3.35,and 793.1-904.1 kg m^(-3),respectively.展开更多
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma...In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.展开更多
Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Ar...Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).展开更多
Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertica...Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertical dimensions of Arctic sea ice and its asymmetry during the melt and freeze seasons are rarely quantified simultaneously based on multiple sources of the same long time series.In this study,the spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice were investigated from both the horizontal and vertical dimensions during 1979–2020 based on remote sensing and assimilation data.The results indicated that Arctic sea ice was declining at a remarkably high rate of–5.4×10^(4) km^(2)/a in sea ice area(SIA)and–2.2 cm/a in sea ice thickness(SIT)during 1979 to 2020,and the reduction of SIA and SIT was the largest in summer and the smallest in winter.Spatially,compared with other sub-regions,SIA showed a sharper declining trend in the Barents Sea,Kara Sea,and East Siberian Sea,while SIT presented a larger downward trend in the northern Canadian Archipelago,northern Greenland,and the East Siberian Sea.Regarding to the seasonal trend of sea ice on sub-region scale,the reduction rate of SIA exhibited an apparent spatial heterogeneity among seasons,especially in summer and winter,i.e.,the sub-regions linked to the open ocean exhibited a higher decline rate in winter;however,the other sub-regions blocked by the coastlines presented a greater decline rate in summer.For SIT,the sub-regions such as the Beaufort Sea,East Siberian Sea,Chukchi Sea,Central Arctic,and Canadian Archipelago always showed a higher downward rate in all seasons.Furthermore,a striking freeze-thaw asymmetry of Arctic sea ice was also detected.Comparing sea ice changes in different dimensions,sea ice over most regions in the Arctic showed an early retreat and rapid advance in the horizontal dimension but late melting and gradual freezing in the vertical dimension.The amount of sea ice melting and freezing was disequilibrium in the Arctic during the considered period,and the rate of sea ice melting was 0.3×10^(4) km^(2)/a and 0.01 cm/a higher than that of freezing in the horizontal and vertical dimensions,respectively.Moreover,there were notable shifts in the melting and freezing of Arctic sea ice in 1997/2003 and 2000/2004,respectively,in the horizontal/vertical dimension.展开更多
The aim of this study was to develop an improved thin sea ice thickness(SIT)retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data.This SI...The aim of this study was to develop an improved thin sea ice thickness(SIT)retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data.This SIT retrieval algorithm was trained using the simulated SIT from the cumulative freezing degree days model during the freeze-up period over five carefully selected regions in the Beaufort,Chukchi,East Siberian,Laptev and Kara seas and utilized the microwave polarization ratio(PR)at incidence angle of 40°.The improvements of the proposed retrieval algorithm include the correction for the sea ice concentration impact,reliable reference SIT data over different representative regions of the Arctic Ocean and the utilization of microwave polarization ratio that is independent of ice temperature.The relationship between the SIT and PR was found to be almost stable across the five selected regions.The SIT retrievals were then compared to other two existing algorithms(i.e.,UH_SIT from the University of Hamburg and UB_SIT from the University of Bremen)and validated against independent SIT data obtained from moored upward looking sonars(ULS)and airborne electromagnetic(EM)induction sensors.The results suggest that the proposed algorithm could achieve comparable accuracies to UH_SIT and UB_SIT with root mean square error(RMSE)being about 0.20 m when validating using ULS SIT data and outperformed the UH_SIT and UB_SIT with RMSE being about 0.21 m when validatng using EM SIT data.The proposed algorithm can be used for thin sea ice thickness(<1.0 m)estimation in the Arctic Ocean and requires less auxiliary data in the SIT retrieval procedure which makes its implementation more practical.展开更多
Sediment-laden sea ice plays an important role in Arctic sediment transport and biogeochemical cycles,as well as the shortwave radiation budget and melt onset of ice surface.However,at present,there is a lack of effic...Sediment-laden sea ice plays an important role in Arctic sediment transport and biogeochemical cycles,as well as the shortwave radiation budget and melt onset of ice surface.However,at present,there is a lack of efficient observation approach from both space and in situ for the coverage of Arctic sediment-laden sea ice.Thus,both spatial distribution and long-term changes in area fraction of such ice floes are still unclear.This study proposes a new classification method to extract Arctic sediment-laden sea ice on the basic of the difference in spectral characteristics between sediment-laden sea ice and clean sea ice in the visible band using the MOD09A1 data with the resolution of 500 m,and obtains its area fraction over the pan Arctic Ocean during 2000−2021.Compared with Landsat-8 true color verification images with a resolution of 30 m,the overall accuracy of our classification method is 92.3%,and the Kappa coefficient is 0.84.The impact of clouds on the results of recognition and spatiotemporal changes of sediment-laden sea ice is relatively small from June to July,compared to that in May or August.Spatially,sediment-laden sea ice mostly appears over the marginal seas of the Arctic Ocean,especially the continental shelf of Chukchi Sea and the Siberian seas.Associated with the retreat of Arctic sea ice extent,the total area of sediment-laden sea ice in June-July also shows a significant decreasing trend of 8.99×10^(4) km^(2) per year.The occurrence of sediment-laden sea ice over the Arctic Ocean in June-July leads to the reduce of surface albedo over the ice-covered ocean by 14.1%.This study will help thoroughly understanding of the role of sediment-laden sea ice in the evolution of Arctic climate system and marine ecological environment,as well as the heat budget and mass balance of sea ice itself.展开更多
The study of Arctic sea ice has traditionally been focused on large-scale such as reductions of ice coverage,thickness,volumes and sea ice regime shift.Research has primarily concentrated on the impact of large-scale ...The study of Arctic sea ice has traditionally been focused on large-scale such as reductions of ice coverage,thickness,volumes and sea ice regime shift.Research has primarily concentrated on the impact of large-scale external factors such as atmospheric and oceanic circulations,and solar radiation.Additionally,Arctic sea ice also undergoes rapid micro-scale evolution such as gas bubbles formation,brine pockets migration and massive formation of surface scattering layer.Field studies like CHINARE(2008-2018)and MOSAiC(2019-2020)have confirmed these observations,yet the full understanding of those changes remain insufficient and superficial.In order to cope better with the rapidly changing Arctic Ocean,this study reviews the recent advances in the microstructure of Arctic sea ice in both field observations and laboratory experiments,and looks forward to the future objectives on the microscale processes of sea ice.The significant porosity and the cyclical annual and seasonal shifts likely modify the ice's thermal,optical,and mechanical characteristics,impacting its energy dynamics and mass balance.Current thermodynamic models,both single-phase and dual-phase,fail to accurately capture these microstructural changes in sea ice,leading to uncertainties in the results.The discrepancy between model predictions and actual observations strongly motivates the parameterization on the evolution in ice microstructure and development of next-generation sea ice models,accounting for changes in ice crystals,brine pockets,and gas bubbles under the background of global warming.It helps to finally achieve a thorough comprehension of Arctic sea ice changes,encompassing both macro and micro perspectives,as well as externaland internal factors.展开更多
The National Oceanic and Atmospheric Administration reports a 95% decline in the oldest Arctic ice over the last 33 years [1], while the National Aeronautics and Space Administration states that summer Arctic Sea Ice ...The National Oceanic and Atmospheric Administration reports a 95% decline in the oldest Arctic ice over the last 33 years [1], while the National Aeronautics and Space Administration states that summer Arctic Sea Ice Extent (SIE) is shrinking by 12.2% per decade since 1979 due to warmer temperatures [2]. Given the rapidly changing Arctic conditions, accurate prediction models are crucial. Deep learning models developed for Arctic forecasts primarily focus on exploring convolutional neural networks (CNN) and convolutional Long Short-Term Memory (LSTM) networks, while the exploration of the power of LSTM networks is limited. In this research, we focus on enhancing the performance of an LSTM network for predicting monthly Arctic SIE. We leverage five climate and atmospheric variables, validated for their correlation with SIE in prior studies [3]. We utilize the Spearman’s rank correlation and ExtraTrees regressor to enhance our understanding of the importance of the five variables in predicting SIE. We further enhance our predictor variables with seasonal information, lagged time steps, and a linear regression simulated SIE that accounts for the influence of past SIE on current SIE. Statistical methods guide our selection of data scalers and best evaluation metrics for our model. By experimenting with hyperparameter optimization and advanced deep learning training techniques, such as batch sizes, number of neurons, early stopping, and model checkpoint, our model achieved a Mean Absolute Error (MAE) of 0.191 and R2 of 0.996, underscoring its ability to account for nearly all the variance in our data and holds great promise for the prediction of SIE.展开更多
In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the cent...In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the central Arctic(CA-high).In this study,SIE along coastal Siberia(Sib-SIE)and Alaska(Ala-SIE)is found to account for about 65%and 21%of the Arctic SIE interannual variability,respectively.Variability in Ala-SIE is related to the GL-high,whereas variability in Sib-SIE is related to the CA-high.A decreased Ala-SIE is associated with decreased cloud cover and increased easterly winds along the Alaskan coast,promoting ice-albedo feedback.A decreased Sib-SIE is associated with a significant increase in water vapor and downward longwave radiation(DLR)along the Siberian coast.The years 2012 and 2020 with minimum recorded ASIE are used as examples.Compared to climatology,summer 2012 is characterized by a significantly enhanced GL-high with major sea ice loss along the Alaskan coast,while summer 2020 is characterized by an enhanced CA-high with sea ice loss focused along the Siberian coast.In 2012,the lack of cloud cover along the Alaskan coast contributed to an increase in incoming solar radiation,amplifying ice-albedo feedback there;while in 2020,the opposite occurs with an increase in cloud cover along the Alaskan coast,resulting in a slight increase in sea ice there.Along the Siberian coast,increased DLR in 2020 plays a dominant role in sea ice loss,and increased cloud cover and water vapor both contribute to the increased DLR.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the e...This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the essential part of local eddy available potential energy, as a metric to quantify the temperature fluctuations with weather patterns on various timescales. By comparing groups of singular value decomposition (SVD) analysis, we suggest a significant linkage between strong (weak) August 10-to-30-day temperature fluctuations over mid-west Asia and enhanced (decreased) Barents-Kara Sea ice in the previous February. We find that when the February SIC increases in the Barents-Kara Sea, a zonal dipolar pattern of SST anomalies appears in the Atlantic subpolar region and lasts from February into the summer months. Evidence suggests that in such a background state, the atmospheric circulation changes evidently from July to August, so that the August is characterized by an amplified meridional circulation over Eurasia, weakened westerlies, and high- pressure anomalies along the Arctic coast. Moreover, the 10-to-30-day wave becomes more active in the North Atlantic-Barents-Kara Sea-Central Asia regions and manifests a more evident southward propagation from the Barents- Kara Sea into the Ural region, which is responsible for the enhanced 10-to-30-day wave activity and temperature fluctuations in the region.展开更多
Extratropical cyclones are critical weather systems that affect large-scale weather and climate changes at mid-high latitudes.However,prior research shows that there are still great difficulties in predicting extratro...Extratropical cyclones are critical weather systems that affect large-scale weather and climate changes at mid-high latitudes.However,prior research shows that there are still great difficulties in predicting extratropical cyclones for occurrence,frequency,and position.In this study,mean sea level pressure(MSLP)data from the European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis(ERA5)are used to calculate the variance statistics of the MSLP to reveal extratropical cyclone activity(ECA).Based on the analysis of the change characteristics of ECA in the Northern Hemisphere,the intrinsic link between ECA in the Northern Hemisphere and Arctic sea ice is explored.The results show that the maximum ECA mainly occurs in winter over the mid-high latitudes in the Northern Hemisphere.The maximum ECA changes in the North Pacific and the North Atlantic,which are the largest variations in the Northern Hemisphere,are independent of each other,and their mechanisms may be different.Furthermore,MSLP is a significant physical variable that affects ECA.The North Atlantic Oscillation(NAO)and North Pacific Index(NPI)are significant indices that impact ECA in the North Atlantic and North Pacific,respectively.The innovation of this paper is to explore the relationship between the activity of extratropical cyclones in the Northern Hemisphere and the abnormal changes in Arctic sea ice for the first time.The mechanism is that the abnormal changes in summer-autumn and winter Arctic sea ice lead to the phase transition of the NPI and NAO,respectively,and then cause the occurrence of ECA in the North Pacific and North Atlantic,respectively.Arctic sea ice plays a crucial role in the ECA in the Northern Hemisphere by influencing the polar vortex and westerly jets.This is the first exploration of ECAs in the Northern Hemisphere using Arctic sea ice,which can provide some references for the in-depth study and prediction of ECAs in the Northern Hemisphere.展开更多
Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s.The prediction of sea ice is highly important,but accurate simulation of sea ice v...Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s.The prediction of sea ice is highly important,but accurate simulation of sea ice variations remains highly challenging.For improving model performance,sensitivity experiments were conducted using the coupled ocean and sea ice model(NEMO-LIM),and the simulation results were compared against satellite observations.Moreover,the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed.The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant(C^(rhg)).By reducing the C^(rhg) constant,the sea ice compressive strength increases,leading to improved simulated sea ice states.The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength.Meanwhile,dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration,reducing the simulation bias in the central Arctic Ocean in summer.The root mean square error(RMSE)between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution.The ice thickness,especially of multiyear thick ice,was also reduced and matched with the satellite observation better in the freezing season.These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.展开更多
This study assesses sea ice thickness(SIT)from the historical run of the Coupled Model Inter-comparison Project Phase 6(CMIP6).The SIT reanalysis from the Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)p...This study assesses sea ice thickness(SIT)from the historical run of the Coupled Model Inter-comparison Project Phase 6(CMIP6).The SIT reanalysis from the Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)product is chosen as the validation reference data.Results show that most models can adequately reproduce the climatological mean,seasonal cycle,and long-term trend of Arctic Ocean SIT during 1979-2014,but significant inter-model spread exists.Differences in simulated SIT patterns among the CMIP6 models may be related to model resolution and sea ice model components.By comparing the climatological mean and trend for SIT among all models,the Arctic SIT change in different seas during 1979-2014 is evaluated.Under the scenario of historical radiative forcing,the Arctic SIT will probably exponentially decay at-18%(10 yr)-1 and plausibly reach its minimum(equilibrium)of 0.47 m since the 2070s.展开更多
Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism c...Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism connecting sea-ice loss to extensive snow cover is still up for debate.In this study,a significant relationship between sea ice concentration(SIC)in the Barents-Kara(B-K)seas in November and snow cover extent over Eurasia in winter(November-January)has been found based in observational datasets and through numerical experiments.The reduction in B-K sea ice gives rise to a negative phase of Arctic Oscillation(AO),a deepened East Asia trough,and a shallow trough over Europe.These circulation anomalies lead to colder-than-normal Eurasian mid-latitude temperatures,providing favorable conditions for snowfall.In addition,two prominent cyclonic anomalies near Europe and Lake Baikal affect moisture transport and its divergence,which results in increased precipitation due to moisture advection and wind convergence.Furthermore,anomalous E-P flux shows that amplified upward propagating waves associated with the low SIC could contribute to the weakening of the polar vortex and southward breakouts of cold air.This work may be helpful for further understanding and predicting the snowfall conditions in the middle latitudes.展开更多
Arctic sea ice export is important for the redistribution of freshwater and sea ice mass.Here,we use the sea ice thickness,sea ice velocity,and sea ice concentration(SIC)to estimate the exported sea ice volume through...Arctic sea ice export is important for the redistribution of freshwater and sea ice mass.Here,we use the sea ice thickness,sea ice velocity,and sea ice concentration(SIC)to estimate the exported sea ice volume through the Fram Strait from 2011 to 2018.We further analyse the contributions of the sea ice thickness,velocity and concentration to sea ice volume export.Then,the relationships between atmospheric circulation indices(Arctic Oscillation(AO),North Atlantic Oscillation(NAO),and Arctic Dipole(AD))and the sea ice volume export are discussed.Finally,we analyse the impact of wind-driven oceanic circulation indices(Ekman transport(ET))on the sea ice volume export.The sea ice volume export rapidly increases in winter and decreases in spring.The exported sea ice volume in winter is likely to exceed that in spring in the future.Among sea ice thickness,velocity and SIC,the greatest contribution to sea ice export comes from the ice velocity.The exported sea ice volume through the zonal gate of the Fram Strait(which contributes 97%to the total sea ice volume export of the Fram Strait)is much higher than that through the meridional gate(3%)because the sea ice flowing out of the zonal gate has the characteristics of a high thickness(mainly thicker than 1 m),a high velocity(mainly faster than 0.06 m/s)and a high concentration(mainly higher than 80%).The AD and ET explain 53.86%and 38.37%of the variation in sea ice volume export,respectively.展开更多
The Arctic sea-ice cover has decreased in extent,area,and thickness over the last six decades.Most global climate models project that the summer sea-ice extent(SIE)will decline to less than 1 million(mill.)km^(2) in t...The Arctic sea-ice cover has decreased in extent,area,and thickness over the last six decades.Most global climate models project that the summer sea-ice extent(SIE)will decline to less than 1 million(mill.)km^(2) in this century,ranging from 2030 to the end of the century,indicating large uncertainty.However,some models,using the same emission scenarios as required by the Paris Agreement to keep the global temperature below 2°C,indicate that the SIE could be about 2 mill.km^(2) in 2100 but with a large uncertainty of±1.5 mill.km^(2).Here,the authors take another approach by exploring the direct relationship between the SIE and atmospheric CO_(2) concentration for the summer-fall months.The authors correlate the SIE and In(CO_(2)/CO_(2)r)during the period 1979-2022,where CO_(2)r is the reference value in 1979.Using these transient regression equations with an R2 between 0.78 and 0.87,the authors calculate the value that the CO_(2) concentration needs to reach for zero SIE.The results are that,for July,the CO_(2) concentration needs to reach 691±16.5 ppm,for August 604±16.5 ppm,for September 563±17.5 ppm,and for October 620±21 ppm.These values of CO_(2)for an ice-free Arctic are much higher than the targets of the Paris Agreement,which are 450 ppm in 2060 and 425 ppm in 2100,under the IPCC SSP1-2.6 scenario.If these targets can be reached or even almost reached,the "no tipping point"hypothesis for the summer SIE may be valid.展开更多
The summertime anticyclonic circulation mode(SACM)is related to recent substantial loss of sea ice in the Arctic.This review outlines the potential causes of the SACM and considers its influence on sea ice depletion.L...The summertime anticyclonic circulation mode(SACM)is related to recent substantial loss of sea ice in the Arctic.This review outlines the potential causes of the SACM and considers its influence on sea ice depletion.Local triggers(i.e.,sea ice loss and sea surface temperature(SST)variation)and spatiotemporal teleconnections(i.e.,extratropical cyclone intrusion,tropical and mid-latitude SST anomalies,and winter atmospheric circulation preconditions)are discussed.The influence of the SACM on the dramatic loss of sea ice is emphasized through inspection of relevant dynamic(i.e.,Ekman drift and export)and thermodynamic(i.e.,moisture content,cloudiness,and associated changes in radiation)mechanisms.Moreover,the motivation for investigation of the underlying physical mechanisms of the SACM in response to the recent substantial sea ice depletionis also clarified through an attempt to better understand the shifting ice-atmosphere interaction in the Arctic during summer.Therecord low extent of sea ice in September 2012 could be reset in the near future if the SACM-like scenario continues to exist during summer in the Arctic troposphere.展开更多
基金partly supported by the Russian Ministry of Science and Higher Education (Agreement No.075-15-2021-577)the Russian Science Foundation (Grant No.23-47-00104)+2 种基金funded by the Research Council of Norway (Grant No.Combined 328935)the support of the Bjerknes Climate Prediction Unit with funding from the Trond Mohn Foundation (Grant No.BFS2018TMT01)the support of the National Natural Science Foundation of China (Grant No.42261134532)。
文摘The shrinking Arctic sea-ice area(SIA) in recent decades is a striking manifestation of the ongoing climate change.Variations of the Arctic sea ice have been continuously observed by satellites since 1979, relatively well monitored since the 1950s, but are highly uncertain in the earlier period due to a lack of observations. Several reconstructions of the historical gridded sea-ice concentration(SIC) data were recently presented based on synthesized regional sea-ice observations or by applying a hybrid model–empirical approach. Here, we present an SIC reconstruction for the period1901–2019 based on established co-variability between SIC and surface air temperature, sea surface temperature, and sea level pressure patterns. The reconstructed sea-ice data for March and September are compared to the frequently used Had ISST1.1 and SIBT1850 datasets. Our reconstruction shows a large decrease in SIA from the 1920 to 1940 concurrent with the Early 20th Century Warming event in the Arctic. Such a negative SIA anomaly is absent in Had ISST1.1 data. The amplitude of the SIA anomaly reaches about 0.8 mln km^(2) in March and 1.5 mln km^(2) in September. The anomaly is about three times stronger than that in the SIBT1850 dataset. The larger decrease in SIA in September is largely due to the stronger SIC reduction in the western sector of the Arctic Ocean in the 70°–80°N latitudinal zone. Our reconstruction provides gridded monthly data that can be used as boundary conditions for atmospheric reanalyses and model experiments to study the Arctic climate for the first half of the 20th century.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金supported by the Fundamental Research Funds for the Central Universities(No.202262012)the National Natural Science Foundation of China(No.42076224)the National Key R&D Program of China(No.2021YFC2801200).
文摘Studying the Arctic sea ice contributes to a comprehensive understanding of the climate system in polar regions and offers valuable insights into the interplay between polar climate change and the global climate and environment.One of the key research aspects is the investigation of the temperature,salinity,and density parameters of sea ice to obtain essential insights.During the 11th Chinese National Arctic Research Expedition,acoustic velocity was measured on an ice core at a short-term ice station,however,temperature,salinity,and density were not measured.In the present work,we utilized a genetic algorithm to invert these obtained acoustic velocity data to sea ice temperature,salinity,and density parameters on the basis of the relationship between acoustic velocity and the physical properties of Arctic summer sea ice.We validated the effectiveness of this inversion procedure by comparing its findings with those of other researchers.The results indicate that within the normalized depth range of 0.43-0.94,the ranges for temperature,salinity,and density are -0.48--0.29℃,1.63-3.35,and 793.1-904.1 kg m^(-3),respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.41976193 and 42176243).
文摘In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications.
基金supported by the Chinese–Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project,MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project,COMBINED (Grant No.328935)the National Natural Science Foundation of China (Grant No.42075030)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_1314)。
文摘Precipitous Arctic sea-ice decline and the corresponding increase in Arctic open-water areas in summer months give more space for sea-ice growth in the subsequent cold seasons. Compared to the decline of the entire Arctic multiyear sea ice,changes in newly formed sea ice indicate more thermodynamic and dynamic information on Arctic atmosphere–ocean–ice interaction and northern mid–high latitude atmospheric teleconnections. Here, we use a large multimodel ensemble from phase 6 of the Coupled Model Intercomparison Project(CMIP6) to investigate future changes in wintertime newly formed Arctic sea ice. The commonly used model-democracy approach that gives equal weight to each model essentially assumes that all models are independent and equally plausible, which contradicts with the fact that there are large interdependencies in the ensemble and discrepancies in models' performances in reproducing observations. Therefore, instead of using the arithmetic mean of well-performing models or all available models for projections like in previous studies, we employ a newly developed model weighting scheme that weights all models in the ensemble with consideration of their performance and independence to provide more reliable projections. Model democracy leads to evident bias and large intermodel spread in CMIP6 projections of newly formed Arctic sea ice. However, we show that both the bias and the intermodel spread can be effectively reduced by the weighting scheme. Projections from the weighted models indicate that wintertime newly formed Arctic sea ice is likely to increase dramatically until the middle of this century regardless of the emissions scenario.Thereafter, it may decrease(or remain stable) if the Arctic warming crosses a threshold(or is extensively constrained).
基金The Chinese Academy of Sciences(CAS)Key Deployment Project of Centre for Ocean Mega-Research of Science under contract No.COMS2020Q07the Open Fund Project of Key Laboratory of Marine Environmental Information Technology,Ministry of Natural Resourcesthe National Natural Science Foundation of China under contract No.41901133.
文摘Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertical dimensions of Arctic sea ice and its asymmetry during the melt and freeze seasons are rarely quantified simultaneously based on multiple sources of the same long time series.In this study,the spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice were investigated from both the horizontal and vertical dimensions during 1979–2020 based on remote sensing and assimilation data.The results indicated that Arctic sea ice was declining at a remarkably high rate of–5.4×10^(4) km^(2)/a in sea ice area(SIA)and–2.2 cm/a in sea ice thickness(SIT)during 1979 to 2020,and the reduction of SIA and SIT was the largest in summer and the smallest in winter.Spatially,compared with other sub-regions,SIA showed a sharper declining trend in the Barents Sea,Kara Sea,and East Siberian Sea,while SIT presented a larger downward trend in the northern Canadian Archipelago,northern Greenland,and the East Siberian Sea.Regarding to the seasonal trend of sea ice on sub-region scale,the reduction rate of SIA exhibited an apparent spatial heterogeneity among seasons,especially in summer and winter,i.e.,the sub-regions linked to the open ocean exhibited a higher decline rate in winter;however,the other sub-regions blocked by the coastlines presented a greater decline rate in summer.For SIT,the sub-regions such as the Beaufort Sea,East Siberian Sea,Chukchi Sea,Central Arctic,and Canadian Archipelago always showed a higher downward rate in all seasons.Furthermore,a striking freeze-thaw asymmetry of Arctic sea ice was also detected.Comparing sea ice changes in different dimensions,sea ice over most regions in the Arctic showed an early retreat and rapid advance in the horizontal dimension but late melting and gradual freezing in the vertical dimension.The amount of sea ice melting and freezing was disequilibrium in the Arctic during the considered period,and the rate of sea ice melting was 0.3×10^(4) km^(2)/a and 0.01 cm/a higher than that of freezing in the horizontal and vertical dimensions,respectively.Moreover,there were notable shifts in the melting and freezing of Arctic sea ice in 1997/2003 and 2000/2004,respectively,in the horizontal/vertical dimension.
基金The National Natural Science Foundation of China under contract Nos 41830536 and 41925027the Guangdong Natural Science Foundation under contract No.2023A1515011235the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311021008.
文摘The aim of this study was to develop an improved thin sea ice thickness(SIT)retrieval algorithm in the Arctic Ocean from the Soil Moisture Ocean Salinity and Soil Moisture Active Passive L-band radiometer data.This SIT retrieval algorithm was trained using the simulated SIT from the cumulative freezing degree days model during the freeze-up period over five carefully selected regions in the Beaufort,Chukchi,East Siberian,Laptev and Kara seas and utilized the microwave polarization ratio(PR)at incidence angle of 40°.The improvements of the proposed retrieval algorithm include the correction for the sea ice concentration impact,reliable reference SIT data over different representative regions of the Arctic Ocean and the utilization of microwave polarization ratio that is independent of ice temperature.The relationship between the SIT and PR was found to be almost stable across the five selected regions.The SIT retrievals were then compared to other two existing algorithms(i.e.,UH_SIT from the University of Hamburg and UB_SIT from the University of Bremen)and validated against independent SIT data obtained from moored upward looking sonars(ULS)and airborne electromagnetic(EM)induction sensors.The results suggest that the proposed algorithm could achieve comparable accuracies to UH_SIT and UB_SIT with root mean square error(RMSE)being about 0.20 m when validating using ULS SIT data and outperformed the UH_SIT and UB_SIT with RMSE being about 0.21 m when validatng using EM SIT data.The proposed algorithm can be used for thin sea ice thickness(<1.0 m)estimation in the Arctic Ocean and requires less auxiliary data in the SIT retrieval procedure which makes its implementation more practical.
基金The National Key Research and Development Program of China under contract No.2021YFC2803304the National Natural Science Foundation of China under contract No.42325604+2 种基金the Program of Shanghai Academic/Technology Research Leader under contract No.22XD1403600the Fundamental Research Funds for the Central Universities under contract No.2042024kf0037the Fund of Key Laboratory for Polar Science,Ministry of Natural Resources,Polar Research Institute of China,under contract No.KP202004.
文摘Sediment-laden sea ice plays an important role in Arctic sediment transport and biogeochemical cycles,as well as the shortwave radiation budget and melt onset of ice surface.However,at present,there is a lack of efficient observation approach from both space and in situ for the coverage of Arctic sediment-laden sea ice.Thus,both spatial distribution and long-term changes in area fraction of such ice floes are still unclear.This study proposes a new classification method to extract Arctic sediment-laden sea ice on the basic of the difference in spectral characteristics between sediment-laden sea ice and clean sea ice in the visible band using the MOD09A1 data with the resolution of 500 m,and obtains its area fraction over the pan Arctic Ocean during 2000−2021.Compared with Landsat-8 true color verification images with a resolution of 30 m,the overall accuracy of our classification method is 92.3%,and the Kappa coefficient is 0.84.The impact of clouds on the results of recognition and spatiotemporal changes of sediment-laden sea ice is relatively small from June to July,compared to that in May or August.Spatially,sediment-laden sea ice mostly appears over the marginal seas of the Arctic Ocean,especially the continental shelf of Chukchi Sea and the Siberian seas.Associated with the retreat of Arctic sea ice extent,the total area of sediment-laden sea ice in June-July also shows a significant decreasing trend of 8.99×10^(4) km^(2) per year.The occurrence of sediment-laden sea ice over the Arctic Ocean in June-July leads to the reduce of surface albedo over the ice-covered ocean by 14.1%.This study will help thoroughly understanding of the role of sediment-laden sea ice in the evolution of Arctic climate system and marine ecological environment,as well as the heat budget and mass balance of sea ice itself.
基金supported by the National Natural Science Foundation of China(Grant nos.42320104004 and 42276242)the National Key Research and Development Program of China(Grant no.2023YFC2809102).
文摘The study of Arctic sea ice has traditionally been focused on large-scale such as reductions of ice coverage,thickness,volumes and sea ice regime shift.Research has primarily concentrated on the impact of large-scale external factors such as atmospheric and oceanic circulations,and solar radiation.Additionally,Arctic sea ice also undergoes rapid micro-scale evolution such as gas bubbles formation,brine pockets migration and massive formation of surface scattering layer.Field studies like CHINARE(2008-2018)and MOSAiC(2019-2020)have confirmed these observations,yet the full understanding of those changes remain insufficient and superficial.In order to cope better with the rapidly changing Arctic Ocean,this study reviews the recent advances in the microstructure of Arctic sea ice in both field observations and laboratory experiments,and looks forward to the future objectives on the microscale processes of sea ice.The significant porosity and the cyclical annual and seasonal shifts likely modify the ice's thermal,optical,and mechanical characteristics,impacting its energy dynamics and mass balance.Current thermodynamic models,both single-phase and dual-phase,fail to accurately capture these microstructural changes in sea ice,leading to uncertainties in the results.The discrepancy between model predictions and actual observations strongly motivates the parameterization on the evolution in ice microstructure and development of next-generation sea ice models,accounting for changes in ice crystals,brine pockets,and gas bubbles under the background of global warming.It helps to finally achieve a thorough comprehension of Arctic sea ice changes,encompassing both macro and micro perspectives,as well as externaland internal factors.
文摘The National Oceanic and Atmospheric Administration reports a 95% decline in the oldest Arctic ice over the last 33 years [1], while the National Aeronautics and Space Administration states that summer Arctic Sea Ice Extent (SIE) is shrinking by 12.2% per decade since 1979 due to warmer temperatures [2]. Given the rapidly changing Arctic conditions, accurate prediction models are crucial. Deep learning models developed for Arctic forecasts primarily focus on exploring convolutional neural networks (CNN) and convolutional Long Short-Term Memory (LSTM) networks, while the exploration of the power of LSTM networks is limited. In this research, we focus on enhancing the performance of an LSTM network for predicting monthly Arctic SIE. We leverage five climate and atmospheric variables, validated for their correlation with SIE in prior studies [3]. We utilize the Spearman’s rank correlation and ExtraTrees regressor to enhance our understanding of the importance of the five variables in predicting SIE. We further enhance our predictor variables with seasonal information, lagged time steps, and a linear regression simulated SIE that accounts for the influence of past SIE on current SIE. Statistical methods guide our selection of data scalers and best evaluation metrics for our model. By experimenting with hyperparameter optimization and advanced deep learning training techniques, such as batch sizes, number of neurons, early stopping, and model checkpoint, our model achieved a Mean Absolute Error (MAE) of 0.191 and R2 of 0.996, underscoring its ability to account for nearly all the variance in our data and holds great promise for the prediction of SIE.
基金the National Key Research and Development Program of China(Grant Nos.2021YFC2802504 and 2019YFC1509104)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021008).
文摘In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the central Arctic(CA-high).In this study,SIE along coastal Siberia(Sib-SIE)and Alaska(Ala-SIE)is found to account for about 65%and 21%of the Arctic SIE interannual variability,respectively.Variability in Ala-SIE is related to the GL-high,whereas variability in Sib-SIE is related to the CA-high.A decreased Ala-SIE is associated with decreased cloud cover and increased easterly winds along the Alaskan coast,promoting ice-albedo feedback.A decreased Sib-SIE is associated with a significant increase in water vapor and downward longwave radiation(DLR)along the Siberian coast.The years 2012 and 2020 with minimum recorded ASIE are used as examples.Compared to climatology,summer 2012 is characterized by a significantly enhanced GL-high with major sea ice loss along the Alaskan coast,while summer 2020 is characterized by an enhanced CA-high with sea ice loss focused along the Siberian coast.In 2012,the lack of cloud cover along the Alaskan coast contributed to an increase in incoming solar radiation,amplifying ice-albedo feedback there;while in 2020,the opposite occurs with an increase in cloud cover along the Alaskan coast,resulting in a slight increase in sea ice there.Along the Siberian coast,increased DLR in 2020 plays a dominant role in sea ice loss,and increased cloud cover and water vapor both contribute to the increased DLR.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
基金the National Key Research and Development Program under Grant 2022YFE0106900the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA2010030804the National Natural Science Foundation of China under Grant No.41621005.
文摘This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the essential part of local eddy available potential energy, as a metric to quantify the temperature fluctuations with weather patterns on various timescales. By comparing groups of singular value decomposition (SVD) analysis, we suggest a significant linkage between strong (weak) August 10-to-30-day temperature fluctuations over mid-west Asia and enhanced (decreased) Barents-Kara Sea ice in the previous February. We find that when the February SIC increases in the Barents-Kara Sea, a zonal dipolar pattern of SST anomalies appears in the Atlantic subpolar region and lasts from February into the summer months. Evidence suggests that in such a background state, the atmospheric circulation changes evidently from July to August, so that the August is characterized by an amplified meridional circulation over Eurasia, weakened westerlies, and high- pressure anomalies along the Arctic coast. Moreover, the 10-to-30-day wave becomes more active in the North Atlantic-Barents-Kara Sea-Central Asia regions and manifests a more evident southward propagation from the Barents- Kara Sea into the Ural region, which is responsible for the enhanced 10-to-30-day wave activity and temperature fluctuations in the region.
基金The National Key Research and Development Program of China under contract No.2022YFF0802002.
文摘Extratropical cyclones are critical weather systems that affect large-scale weather and climate changes at mid-high latitudes.However,prior research shows that there are still great difficulties in predicting extratropical cyclones for occurrence,frequency,and position.In this study,mean sea level pressure(MSLP)data from the European Centre for Medium-Range Weather Forecasts(ECMWF)reanalysis(ERA5)are used to calculate the variance statistics of the MSLP to reveal extratropical cyclone activity(ECA).Based on the analysis of the change characteristics of ECA in the Northern Hemisphere,the intrinsic link between ECA in the Northern Hemisphere and Arctic sea ice is explored.The results show that the maximum ECA mainly occurs in winter over the mid-high latitudes in the Northern Hemisphere.The maximum ECA changes in the North Pacific and the North Atlantic,which are the largest variations in the Northern Hemisphere,are independent of each other,and their mechanisms may be different.Furthermore,MSLP is a significant physical variable that affects ECA.The North Atlantic Oscillation(NAO)and North Pacific Index(NPI)are significant indices that impact ECA in the North Atlantic and North Pacific,respectively.The innovation of this paper is to explore the relationship between the activity of extratropical cyclones in the Northern Hemisphere and the abnormal changes in Arctic sea ice for the first time.The mechanism is that the abnormal changes in summer-autumn and winter Arctic sea ice lead to the phase transition of the NPI and NAO,respectively,and then cause the occurrence of ECA in the North Pacific and North Atlantic,respectively.Arctic sea ice plays a crucial role in the ECA in the Northern Hemisphere by influencing the polar vortex and westerly jets.This is the first exploration of ECAs in the Northern Hemisphere using Arctic sea ice,which can provide some references for the in-depth study and prediction of ECAs in the Northern Hemisphere.
基金Supported by the National Natural Science Foundation of China(Nos.41630969,41941013,41806225)the Tianjin Municipal Natural Science Foundation(No.20JCQNJC01290)。
文摘Satellite records show that the extent and thickness of sea ice in the Arctic Ocean have significantly decreased since the early 1970s.The prediction of sea ice is highly important,but accurate simulation of sea ice variations remains highly challenging.For improving model performance,sensitivity experiments were conducted using the coupled ocean and sea ice model(NEMO-LIM),and the simulation results were compared against satellite observations.Moreover,the contribution ratios of dynamic and thermodynamic processes to sea ice variations were analyzed.The results show that the performance of the model in reconstructing the spatial distribution of Arctic sea ice is highly sensitive to ice strength decay constant(C^(rhg)).By reducing the C^(rhg) constant,the sea ice compressive strength increases,leading to improved simulated sea ice states.The contribution of thermodynamic processes to sea ice melting was reduced due to less deformation and fracture of sea ice with increased compressive strength.Meanwhile,dynamic processes constrained more sea ice to the central Arctic Ocean and contributed to the increases in ice concentration,reducing the simulation bias in the central Arctic Ocean in summer.The root mean square error(RMSE)between modeled and the CryoSat-2/SMOS satellite observed ice thickness was reduced in the compressive strength-enhanced model solution.The ice thickness,especially of multiyear thick ice,was also reduced and matched with the satellite observation better in the freezing season.These provide an essential foundation on exploring the response of the marine ecosystem and biogeochemical cycling to sea ice changes.
基金the National Natural Science Foundation of China(Grant Nos.41922044 and 41941009)the National Key R&D Program of China(Grant No.2019YFA0607004 and 2022YFE0106300)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2020B1515020025 and 2019A1515110295)the Norges Forskningsråd(Grant No.328886).
文摘This study assesses sea ice thickness(SIT)from the historical run of the Coupled Model Inter-comparison Project Phase 6(CMIP6).The SIT reanalysis from the Pan-Arctic Ice Ocean Modeling and Assimilation System(PIOMAS)product is chosen as the validation reference data.Results show that most models can adequately reproduce the climatological mean,seasonal cycle,and long-term trend of Arctic Ocean SIT during 1979-2014,but significant inter-model spread exists.Differences in simulated SIT patterns among the CMIP6 models may be related to model resolution and sea ice model components.By comparing the climatological mean and trend for SIT among all models,the Arctic SIT change in different seas during 1979-2014 is evaluated.Under the scenario of historical radiative forcing,the Arctic SIT will probably exponentially decay at-18%(10 yr)-1 and plausibly reach its minimum(equilibrium)of 0.47 m since the 2070s.
基金financially supported by the International Partnership Program of Chinese Academy of Sciences (Grant No. 131B62KYSB20180003)the Frontier Science Key Project of CAS (Grant No. QYZDY-SSW-DQC021)the State Key Laboratory of Cryospheric Science (Grant No. SKLCSZZ-2022)
文摘Recent research has shown that snow cover induces extreme wintertime cooling and has detrimental impacts.Although the dramatic loss of Arctic sea ice certainly has contributed to a more extreme climate,the mechanism connecting sea-ice loss to extensive snow cover is still up for debate.In this study,a significant relationship between sea ice concentration(SIC)in the Barents-Kara(B-K)seas in November and snow cover extent over Eurasia in winter(November-January)has been found based in observational datasets and through numerical experiments.The reduction in B-K sea ice gives rise to a negative phase of Arctic Oscillation(AO),a deepened East Asia trough,and a shallow trough over Europe.These circulation anomalies lead to colder-than-normal Eurasian mid-latitude temperatures,providing favorable conditions for snowfall.In addition,two prominent cyclonic anomalies near Europe and Lake Baikal affect moisture transport and its divergence,which results in increased precipitation due to moisture advection and wind convergence.Furthermore,anomalous E-P flux shows that amplified upward propagating waves associated with the low SIC could contribute to the weakening of the polar vortex and southward breakouts of cold air.This work may be helpful for further understanding and predicting the snowfall conditions in the middle latitudes.
基金The National Key Research and Development Program of China under contract No.2021YFC2803301the National Natural Science Foundation of China under contract Nos 41976212 and 41830105the Natural Science Foundation of Jiangsu Province under contract No.BK20210193.
文摘Arctic sea ice export is important for the redistribution of freshwater and sea ice mass.Here,we use the sea ice thickness,sea ice velocity,and sea ice concentration(SIC)to estimate the exported sea ice volume through the Fram Strait from 2011 to 2018.We further analyse the contributions of the sea ice thickness,velocity and concentration to sea ice volume export.Then,the relationships between atmospheric circulation indices(Arctic Oscillation(AO),North Atlantic Oscillation(NAO),and Arctic Dipole(AD))and the sea ice volume export are discussed.Finally,we analyse the impact of wind-driven oceanic circulation indices(Ekman transport(ET))on the sea ice volume export.The sea ice volume export rapidly increases in winter and decreases in spring.The exported sea ice volume in winter is likely to exceed that in spring in the future.Among sea ice thickness,velocity and SIC,the greatest contribution to sea ice export comes from the ice velocity.The exported sea ice volume through the zonal gate of the Fram Strait(which contributes 97%to the total sea ice volume export of the Fram Strait)is much higher than that through the meridional gate(3%)because the sea ice flowing out of the zonal gate has the characteristics of a high thickness(mainly thicker than 1 m),a high velocity(mainly faster than 0.06 m/s)and a high concentration(mainly higher than 80%).The AD and ET explain 53.86%and 38.37%of the variation in sea ice volume export,respectively.
基金funding support from the Nansen Scientific Society.
文摘The Arctic sea-ice cover has decreased in extent,area,and thickness over the last six decades.Most global climate models project that the summer sea-ice extent(SIE)will decline to less than 1 million(mill.)km^(2) in this century,ranging from 2030 to the end of the century,indicating large uncertainty.However,some models,using the same emission scenarios as required by the Paris Agreement to keep the global temperature below 2°C,indicate that the SIE could be about 2 mill.km^(2) in 2100 but with a large uncertainty of±1.5 mill.km^(2).Here,the authors take another approach by exploring the direct relationship between the SIE and atmospheric CO_(2) concentration for the summer-fall months.The authors correlate the SIE and In(CO_(2)/CO_(2)r)during the period 1979-2022,where CO_(2)r is the reference value in 1979.Using these transient regression equations with an R2 between 0.78 and 0.87,the authors calculate the value that the CO_(2) concentration needs to reach for zero SIE.The results are that,for July,the CO_(2) concentration needs to reach 691±16.5 ppm,for August 604±16.5 ppm,for September 563±17.5 ppm,and for October 620±21 ppm.These values of CO_(2)for an ice-free Arctic are much higher than the targets of the Paris Agreement,which are 450 ppm in 2060 and 425 ppm in 2100,under the IPCC SSP1-2.6 scenario.If these targets can be reached or even almost reached,the "no tipping point"hypothesis for the summer SIE may be valid.
基金This work is financially supported by Laoshan Laboratory(Grant no.LSKJ202203003)National Natural Science Foundation of China(Grant nos.42276250,41976221)General Project of Natural Science Foundation of Shandong Province(Grant no.ZR2020MD100).
文摘The summertime anticyclonic circulation mode(SACM)is related to recent substantial loss of sea ice in the Arctic.This review outlines the potential causes of the SACM and considers its influence on sea ice depletion.Local triggers(i.e.,sea ice loss and sea surface temperature(SST)variation)and spatiotemporal teleconnections(i.e.,extratropical cyclone intrusion,tropical and mid-latitude SST anomalies,and winter atmospheric circulation preconditions)are discussed.The influence of the SACM on the dramatic loss of sea ice is emphasized through inspection of relevant dynamic(i.e.,Ekman drift and export)and thermodynamic(i.e.,moisture content,cloudiness,and associated changes in radiation)mechanisms.Moreover,the motivation for investigation of the underlying physical mechanisms of the SACM in response to the recent substantial sea ice depletionis also clarified through an attempt to better understand the shifting ice-atmosphere interaction in the Arctic during summer.Therecord low extent of sea ice in September 2012 could be reset in the near future if the SACM-like scenario continues to exist during summer in the Arctic troposphere.