Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°-107°E, 36°-37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the elec...Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°-107°E, 36°-37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (I), Xihuashan-Nanhuashan uplift (II), Xingrenbu-Haiyuan basin (III), Zhongwei-Qingshuihe basin (IV), Zhongning-Hongsibu basin (V) and west-margin zone of Ordos (VI) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections II and VI, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section III is the deepest, displaying a dustpan shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.展开更多
The northeast Tibetan plateau contains important inlbrmation on the northeastward growth of the Tibetan plateau. It is bounded by the Ordos Block to the east, the Alxa Block to the north, and the Tibetan Plateau to th...The northeast Tibetan plateau contains important inlbrmation on the northeastward growth of the Tibetan plateau. It is bounded by the Ordos Block to the east, the Alxa Block to the north, and the Tibetan Plateau to the south (inset in Fig. 1; Tapponnier et al., 2001), and has undergone complex intracontinental deformation during the Cenozoic. In this region, the northeast-convex arcuate structures developed northeastward, and are composed of a series of Cenozoic NW-SE-trending basin-and-range terrain, i.e., the Haiyuan-Xingrenbu basin, Tongxin basin and Hongsipu basin, the Yueliang Shan-Nanhua Shan- Huangjiawa Shan, Xiang Shan-Xiangjing Shan, Yantong Shan and Luo Shan-Niushou Shah, which is geometrically similar with the American basin-range tectonics.展开更多
The active and quiet phenomenon of moderate strong earthquakes one year before the earthquakes with M S≥7.0, the spatial distribution characteristics of the solid tide modulating and triggering earthquakes and the st...The active and quiet phenomenon of moderate strong earthquakes one year before the earthquakes with M S≥7.0, the spatial distribution characteristics of the solid tide modulating and triggering earthquakes and the strong earthquake mechanisms on the Chinese continent have been studied. The secondary arcuate tectonic zone composed of the west Kunlun-Anyêmaqên faults is believed to be a very important boundary to characterize strong earthquake activity of M S≥7.0 on the Chinese continent, that is, a boundary between the seismically active region and the quiet region of moderately strong earthquakes one year before earthquakes with M S≥7.0, and a boundary of the spatial distributions between the solid tide modulating strong earthquakes (M S≥7.0) and the non-modulating ones. It might be related with the characteristics of spatial distribution of focal mechanism solutions of strong earthquakes on the Chinese Continent.展开更多
Landslide dams,especially long-term stable landslide dams,have been recognized as important contributors to regional geomorphological evolution.Here,the Diexi area,a long-term stable dam-prone area located in upstream...Landslide dams,especially long-term stable landslide dams,have been recognized as important contributors to regional geomorphological evolution.Here,the Diexi area,a long-term stable dam-prone area located in upstream of the Minjiang River on the eastern Tibetan Plateau,was adopted to reveal reasons that landslide dams are concentrated in this area and maintain long-term stability via detailed field investigations,landslide dam sampling,unmanned aerial vehicle(UAV)images,and digital surface models(DSM).The results show the controlling factors that the slopes are prone to sliding and rock mass structure deterioration including lithological combination mode,slope structure,topographic conditions,a series of NNE-trending radial fissures and hydrological conditions.Fault activities,which have caused many earthquakes,are the main inducing factor.Landslide dams are prone to occurrence in the Diexi area owing to the combined effect of the narrow channels,the large landslide dam volume and the rock fragments.The river flow,and the landslide dam volume,material,structure,and parameters control the stability of landslide dams.The landslide dam consists of various sizes of boulders and all landslide dams exhibit an obvious inverse grading sequence,and this size combination could consume most of the flow energy,and consequently protect the dam from incision.Additionally,a total of seven knickpoints were formed by landslide dams,and the longitudinal gradient upstream of every landslide dam was found to decrease by the action of knickpoint.In the eastern margin of the Tibetan Plateau,there are numerous landslide dams existed for hundreds or thousands of years.Studies on the long-term stable landslide dams in the Diexi area could provide experience for studying similar kinds of landslide dams in this region.展开更多
A good understanding of giant landslide-prone areas could greatly enhance the understanding of the formation and failure mechanisms of giant landslides.In this study,a classic giant landslide-prone area named the Diex...A good understanding of giant landslide-prone areas could greatly enhance the understanding of the formation and failure mechanisms of giant landslides.In this study,a classic giant landslide-prone area named the Diexi area located along the upstream stretch of the Minjiang River on the eastern Tibetan Plateau is adopted to analyze the failure mechanism and evolution process by detailed field investigations,Unmanned Aerial Vehicle(UAV)images and a digital surface model(DSM).The results show that among the 37 giant landslides located in the Diexi area,18 landslides are transverse landslides(wedge failure),and the others are consequent landslides(buckling failure).All landslides blocked rivers,and some barrier lakes still remain.The Diexi area features special geological structural conditions related to the hinge section of the Jiaochang arc tectonic belt,the intersection of two active fault zones(the Songpinggou and Minjiang fault zones)and high levels of geostress.The numerous radial fissures induced by the Jiaochang arcuate belt provided lateral sliding boundaries for buckling deformation(consequent landslides)and head scarps for wedge failure(transverse landslides).The rapid incision(1.88 mm/yr)since the middle Pleistocene formed a deep gorge with steep slopes and strong lateral unloading.Frequent earthquakes and rainfall further reduced the rock mass integrity,and strong earthquakes or other factors triggered the landslides.展开更多
基金National Natural Science Foundation of China (40374032), State Key Basic Research Development and Program-ming Project (95-13-02-02) and Joint Seismological Science Foundation of China (102088).
文摘Through the analysis and 2-D inversion for the 5 profiles in Haiyuan arcuate tectonic region (105°-107°E, 36°-37.5°N) in the northeastern margin of Qinghai-Xizang Plateau, we have obtained the electric structure within a range of 160 km in width (east-west) and 60 km in depth in the studied area. The results show that the crustal electric structure can be divided into 6 sections, corresponding respectively to Xiji basin (I), Xihuashan-Nanhuashan uplift (II), Xingrenbu-Haiyuan basin (III), Zhongwei-Qingshuihe basin (IV), Zhongning-Hongsibu basin (V) and west-margin zone of Ordos (VI) from the southwest to the northeast. The crustal electric structure is characterized by a broom-shaped pattern, which scatters to the northwest and shrinks to the southeast. The structures in the top part of Haiyuan arcuate tectonic region are complete and large, however, they diminish from the arc top to the northwest and southeast ends. In the depth from 0 km to 10 km, the resistivity is high in the sections II and VI, but relatively low in the other four sections, showing a similar pattern of basin depression. The electrical basement in the section III is the deepest, displaying a dustpan shape that is deep in the southwest and shallow in the northeast. A series of discontinuous zones with high conductivity exist in the middle-lower crust in Haiyuan arcuate tectonic region, which is possibly related to the moderate and strong earthquakes in the region. The resistivity distribution in the focal area of the 1920 Haiyuan earthquake is significantly heterogeneous with an obviously high conductivity zone near the hypocenter regime.
基金supported by research grants from China Geological Survey (CGS) (No.1212011120100,1212011120099 and 1212011220259)
文摘The northeast Tibetan plateau contains important inlbrmation on the northeastward growth of the Tibetan plateau. It is bounded by the Ordos Block to the east, the Alxa Block to the north, and the Tibetan Plateau to the south (inset in Fig. 1; Tapponnier et al., 2001), and has undergone complex intracontinental deformation during the Cenozoic. In this region, the northeast-convex arcuate structures developed northeastward, and are composed of a series of Cenozoic NW-SE-trending basin-and-range terrain, i.e., the Haiyuan-Xingrenbu basin, Tongxin basin and Hongsipu basin, the Yueliang Shan-Nanhua Shan- Huangjiawa Shan, Xiang Shan-Xiangjing Shan, Yantong Shan and Luo Shan-Niushou Shah, which is geometrically similar with the American basin-range tectonics.
文摘The active and quiet phenomenon of moderate strong earthquakes one year before the earthquakes with M S≥7.0, the spatial distribution characteristics of the solid tide modulating and triggering earthquakes and the strong earthquake mechanisms on the Chinese continent have been studied. The secondary arcuate tectonic zone composed of the west Kunlun-Anyêmaqên faults is believed to be a very important boundary to characterize strong earthquake activity of M S≥7.0 on the Chinese continent, that is, a boundary between the seismically active region and the quiet region of moderately strong earthquakes one year before earthquakes with M S≥7.0, and a boundary of the spatial distributions between the solid tide modulating strong earthquakes (M S≥7.0) and the non-modulating ones. It might be related with the characteristics of spatial distribution of focal mechanism solutions of strong earthquakes on the Chinese Continent.
基金supported by the National Natural Science Foundation of China(Grant No.41877235)。
文摘Landslide dams,especially long-term stable landslide dams,have been recognized as important contributors to regional geomorphological evolution.Here,the Diexi area,a long-term stable dam-prone area located in upstream of the Minjiang River on the eastern Tibetan Plateau,was adopted to reveal reasons that landslide dams are concentrated in this area and maintain long-term stability via detailed field investigations,landslide dam sampling,unmanned aerial vehicle(UAV)images,and digital surface models(DSM).The results show the controlling factors that the slopes are prone to sliding and rock mass structure deterioration including lithological combination mode,slope structure,topographic conditions,a series of NNE-trending radial fissures and hydrological conditions.Fault activities,which have caused many earthquakes,are the main inducing factor.Landslide dams are prone to occurrence in the Diexi area owing to the combined effect of the narrow channels,the large landslide dam volume and the rock fragments.The river flow,and the landslide dam volume,material,structure,and parameters control the stability of landslide dams.The landslide dam consists of various sizes of boulders and all landslide dams exhibit an obvious inverse grading sequence,and this size combination could consume most of the flow energy,and consequently protect the dam from incision.Additionally,a total of seven knickpoints were formed by landslide dams,and the longitudinal gradient upstream of every landslide dam was found to decrease by the action of knickpoint.In the eastern margin of the Tibetan Plateau,there are numerous landslide dams existed for hundreds or thousands of years.Studies on the long-term stable landslide dams in the Diexi area could provide experience for studying similar kinds of landslide dams in this region.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1501000)the National Natural Science Foundation of China(Grant No.42007273,41877235)+2 种基金Youth Fund of Institute of Mountain Hazards and Environment CAS(Zhao Bo)Special Assistant Researcher Foundation of Chinese Academy of Sciences(ZHAO Bo,TANG Chen xiao)China Postdoctoral Science Foundation(2020M673292)。
文摘A good understanding of giant landslide-prone areas could greatly enhance the understanding of the formation and failure mechanisms of giant landslides.In this study,a classic giant landslide-prone area named the Diexi area located along the upstream stretch of the Minjiang River on the eastern Tibetan Plateau is adopted to analyze the failure mechanism and evolution process by detailed field investigations,Unmanned Aerial Vehicle(UAV)images and a digital surface model(DSM).The results show that among the 37 giant landslides located in the Diexi area,18 landslides are transverse landslides(wedge failure),and the others are consequent landslides(buckling failure).All landslides blocked rivers,and some barrier lakes still remain.The Diexi area features special geological structural conditions related to the hinge section of the Jiaochang arc tectonic belt,the intersection of two active fault zones(the Songpinggou and Minjiang fault zones)and high levels of geostress.The numerous radial fissures induced by the Jiaochang arcuate belt provided lateral sliding boundaries for buckling deformation(consequent landslides)and head scarps for wedge failure(transverse landslides).The rapid incision(1.88 mm/yr)since the middle Pleistocene formed a deep gorge with steep slopes and strong lateral unloading.Frequent earthquakes and rainfall further reduced the rock mass integrity,and strong earthquakes or other factors triggered the landslides.