Let M be the class of areally mean univalent function, f ∈M and In this paper, we estimate the arithmetical mean of coefficients Dn(λ) and the arithmetical mean of successive coefficients tn(λ) =||Dn+1(λ)|-|Dn(λ)...Let M be the class of areally mean univalent function, f ∈M and In this paper, we estimate the arithmetical mean of coefficients Dn(λ) and the arithmetical mean of successive coefficients tn(λ) =||Dn+1(λ)|-|Dn(λ)||. Our results are sharp. In addition, we also generalize Hayman's theorem on integral mean展开更多
The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-inv...The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-invariant space of functions analytic in the unit disk. Their contributions are slight improvements of known results, and the proofs presented here are independently developed. The corresponding results for meromorphic case are also given.展开更多
文摘Let M be the class of areally mean univalent function, f ∈M and In this paper, we estimate the arithmetical mean of coefficients Dn(λ) and the arithmetical mean of successive coefficients tn(λ) =||Dn+1(λ)|-|Dn(λ)||. Our results are sharp. In addition, we also generalize Hayman's theorem on integral mean
基金Supported by NSF of China (10671115)RFDP of China (20060560002)NSF of Guangdong Province of China (06105648)
文摘The author gives a mild integral condition in a nondecreasing function K : [0, ∞) → [0, ∞), which is sufficient and the best possible to ensure that f is a Bloch function if and only if f belongs to QK, a Mbius-invariant space of functions analytic in the unit disk. Their contributions are slight improvements of known results, and the proofs presented here are independently developed. The corresponding results for meromorphic case are also given.