A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at ...A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.展开更多
Focal adhesions are polyproteins linked to extracellular matrix and cytoskeleton,which play an important role in the process of transforming force signals into intracellular chemical signals and subsequently triggerin...Focal adhesions are polyproteins linked to extracellular matrix and cytoskeleton,which play an important role in the process of transforming force signals into intracellular chemical signals and subsequently triggering related physiological or pathological reactions.The cytoskeleton is a network of protein fibers in the cytoplasm,which is composed of microfilaments,microtubules,intermediate filaments,and cross-linked proteins.It is a very important structure for cells to maintain their basic morphology.This review summarizes the process of fluid shear stress transduction mediated by focal adhesion and the key role of the cytoskeleton in this process,which focuses on the focal adhesion and cytoskeleton systems.The important proteins involved in signal transduction in focal adhesion are introduced emphatically.The relationship between focal adhesion and mechanical transduction pathways are discussed.In this review,we discuss the relationship between fluid shear stress and associated diseases such as atherosclerosis,as well as its role in clinical research and drug development.展开更多
Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering.Substantial effort has been made to differentiate stem cells toward vascul...Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering.Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes,including endothelial cells(ECs)and smooth muscle cells.The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces,such as shear stress and cyclic strain.More recently,studies have shown that shear stress can influence the differentiation of stem cells toward ECs.A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation.This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs.Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed.Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.展开更多
In consideration of the mechanism for shear-stress-induced Ca^2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stres...In consideration of the mechanism for shear-stress-induced Ca^2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stress-induced Ca^2+ influx. It is affected both by the Ca^2+ gradient across the cell membrane and extracellular ATP concentration on the cell surface. Meanwhile, a new static ATP release model is constructed by using published experimental data. Combining the modified intracellular calcium dynamics model with the new ATP release model, we establish a nonlinear Ca^2+ dynamic system in vascular endothelial cells. The ATP-mediated calcium response in vascular endothelial cells subjected to shear stresses is analyzed by solving the governing equations of the integrated dynamic system. Numerical results show that the shear-stress-induced calcium response predicted by the proposed model is more consistent with the experimental observations than that predicted by existing models.展开更多
Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial syste...Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls, which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.展开更多
Objective: To determine the effect of antiparallel phosphorothioate triplex-forming oligonucleotide (apsTFO), which was designed according to shear stress response element (SSRE) in tissue factor (TF) gene prom...Objective: To determine the effect of antiparallel phosphorothioate triplex-forming oligonucleotide (apsTFO), which was designed according to shear stress response element (SSRE) in tissue factor (TF) gene promoter region, on the expression of endothelial TF in carotid artery stenosis rats. Methods: Rat model of severe carotid artery stenosis were inflicted by silica gel tube ligation. Half an hour before the model infliction, GT20-apsTFO, GT20-psTFO and GT21-apsTFO labeled with green fluorescence (FITC) were injected into the vena caudalis of rat at a dose of 0.5 mg/kg. Half an hour, 4 or 9 h after the ligation, the distribution of TFO in the common carotid artery, the liver and the kidney was detected with aid of fluorescence microscopy. And the mRNA and protein expressions of TF, Egr-1 and Spl in the above-mentioned organs were determined with in situ hybridization and immunohistochemical assay respectively in 6 h after the model establishment, and the results were analyzed with an image analysis system. Results: Only in 1 h after TFO injection, fluorescent granules appeared in the liver, the kidney and the vascular wall and lumen of carotid artery, and then in 4.5 h, they still deposited in above sites except the vascular lumen. GT20-apsTFO and GT21-apsTFO significant down-regulated the mRNA and protein expressions of TF compared to the rats without treatment (P〈0.05), and the former apsTFO had a more stronger effect than the later (P〈0.05). GT20-psTFO had no such effect (P〉0.05). The 3 TFOs had no inhibition on the mRNA and protein expressions of Egr-1 and Spl. Conclusion: Pretreated apsTFO can partly come into the vascular endothelial cells, and inhibit TF expression induced by shear stress, but had no effect on Egr-1 and Spl gene expressions.展开更多
Instruction Shear stress,caused by the parallel frictional drag force of blood flow,is a biomechanical force which plays an important role in the control of blood vessels growth and functions [1]. Clinical researches ...Instruction Shear stress,caused by the parallel frictional drag force of blood flow,is a biomechanical force which plays an important role in the control of blood vessels growth and functions [1]. Clinical researches had found out that atherosclerotic le-展开更多
Background: Low shear stress caused by disturbed or turbulent flow at arterial branch points is known to associate with atherosclerosis. However, shear stress at the venous valve location and its association with deep...Background: Low shear stress caused by disturbed or turbulent flow at arterial branch points is known to associate with atherosclerosis. However, shear stress at the venous valve location and its association with deep vein thrombosis are less understood due to the complex and poorly understood bi-directional flow in the valve pocket region. We investigated how venous endothelial cells respond to flow shear stress around the venous valve region using a novel in vitro system that mimics venous flow. Results: Human umbilical vein EAhy. 926 cells were cultured on a flexible silastic membrane that mimicked venous tissue. Confluent cells were exposed to sinusoidal uni-and bi-directional pulsatile shear stress (0.1 to 1 dyne/cm2) for up to 6 h. Western-blot analyses indicated that endothelial nitric oxide (eNOS) expression levels decreased regardless of all tested flow patterns, stress magnitude, and shearing time. In contrast, the expression levels of inhibitor of κB (kappa B) and α (alpha)-tubulin were unaffected by the shear stress. Conclusions: Our results indicate that shear stress causes a decrease specifically in eNOS expression, suggesting that it may play a significant role in regulating inflammation related protein expression in endothelial cells.展开更多
Laminar shear stress (LSS) due to pulsatile blood flow enhances endothelial function by multiple mechanisms including NO production. Red wine and its constituent, resveratrol, have also been postulated to provide vasc...Laminar shear stress (LSS) due to pulsatile blood flow enhances endothelial function by multiple mechanisms including NO production. Red wine and its constituent, resveratrol, have also been postulated to provide vascular protective effects. The aim of the present study was to compare the effects of mechanical LSS and pharmacological resveratrol treatments on the endothelial citrulline-NO cycle. Human umbilical vein endothelial cells (HUVECs) were treated with LSS (12 dyn·cm-2) or resveratrol (25 - 100 μM). The expressions of argininosuccinate synthetase 1 (ASS1), argininosuccinate lyase (ASL), nitric oxide synthase 3 (NOS3) and cationic amino acid transporter 1 (CAT1), and the production of NO were determined. The expressions of Kruppel-like factor (KLF) 2 and KLF4 as upstream regulators of ASS1 and NOS3 were also analyzed. LSS strongly increased the mRNA levels of ASS1 (8.3 fold) and NOS3 (5.4 fold) without significant effects on ASL and CAT1 mRNAs. Resveratrol increased the ASS1 mRNA level in a dose-dependent manner up to 3.8 fold at 100 μM. The effects of resveratrol on the expressions of KLF2 and KLF4 mRNAs were smaller than those of LSS. Protein levels of ASS1 and NOS3, and NO production were markedly increased by LSS but resveratrol (50 μM) increased only ASS1 protein level. The results of the current study showed that LSS had greater effects on the citrulline-NO cycle activity leading to NO production, compared to resveratrol. Because resveratrol was not so effective at stimulating the endothelial citrulline-NO cycle, further studies are needed to find more potent drugs that increase the expression of ASS1 and NOS3 genes.展开更多
he potential benefits of endothelial cell seeding depend not only on effective cell attachment, but also on the ability of the cells to resist the shear stresses of blood flow. The shear stressresistance of cultured a...he potential benefits of endothelial cell seeding depend not only on effective cell attachment, but also on the ability of the cells to resist the shear stresses of blood flow. The shear stressresistance of cultured adult human endothelial cells was investigated on 6mm polytetrafluoroethylene vascular grafts (made in China). Endothelial cells were sodded onto pretreated vascular grafts at a high density. Grafts were then cultivated for 9 days to enable the maturation of thecytoskeleton, before they were exposed to pulsatile flow simulating the flow patterns and the wallshear forces of the small srtery. After 1 hour of per fusion,a cell loss of 11% in grafts pretreatedwith 20μ g/ ml fibronectin and of 12% in grafts pretreated with 5μ g /ml fibronectin coated human platelet- poor- plasma (p>0. 50 n = 10). Therefore we conclude that the endothelial celllining on vascular grafts pretreated with suitable substrates can form a shear stress-resistant endothelial cell monolayer on polytetrafluoroethylene vascular grafts.展开更多
Nanoparticles(NPs)hold tremendous targeting potential in cardiovascular disease and regenerative medicine,and exciting clinical applications are coming into light.Vascular endothelial cells(ECs)exposure to different m...Nanoparticles(NPs)hold tremendous targeting potential in cardiovascular disease and regenerative medicine,and exciting clinical applications are coming into light.Vascular endothelial cells(ECs)exposure to different magnitudes and patterns of shear stress(SS)generated by blood flow could engulf NPs in the blood.However,an unclear understanding of the role of SS on NP uptake is hindering the progress in improving the targeting of NP therapies.Here,the temporal and spatial distribution of SS in vascular ECs and the effect of different SS on NP uptake in ECs are highlighted.The mechanism of SS affecting NP uptake through regulating the cellular ROS level,endothelial glycocalyx and membrane fluidity is summarized,and the molecules containing clathrin and caveolin in the engulfment process are elucidated.SS targeting NPs are expected to overcome the current bottlenecks and change the field of targeting nanomedicine.This assessment on how SS affects the cell uptake of NPs and the marginalization of NPs in blood vessels could guide future research in cell biology and vascular targeting drugs.展开更多
Extracellular vesicles(EVs)are increasingly used as delivery vehicles for drugs and bioactive molecules,which usually require intravascular administration.The endothelial cells covering the inner surface of blood vess...Extracellular vesicles(EVs)are increasingly used as delivery vehicles for drugs and bioactive molecules,which usually require intravascular administration.The endothelial cells covering the inner surface of blood vessels are susceptible to the shear stress of blood flow.Few studies demonstrate the interplay of red blood cell-derived EVs(RBCEVs)and endothelial cells.Thus,the phagocytosis of EVs by vascular endothelial cells during blood flow needs to be elucidated.In this study,red blood cell-derived extracellular vesicles(RBCEVs)were constructed to investigate endothelial cell phagocytosis in vitro and animal models.Results showed that low magnitude shear stress including low shear stress(LSS)and oscillatory shear stress(OSS)could promote the uptake of RBCEVs by endothelial cells in vitro.In addition,in zebrafish and mouse models,RBCEVs tend to be internalized by endothelial cells under LSS or OSS.Moreover,RBCEVs are easily engulfed by endothelial cells in atherosclerotic plaques exposed to LSS or OSS.In terms of mechanism,oxidative stress induced by LSS is part of the reason for the increased uptake of endothelial cells.Overall,this study shows that vascular endothelial cells can easily engulf EVs in areas of low magnitude shear stress,which will provide a theoretical basis for the development and utilization of EVs-based nano-drug delivery systems in vivo.展开更多
Endothelial cells(ECs)that reside on the surface of blood vessels are constantly exposed to mechanical stimulation,including shear stress.Fluid shear stress(FSS)controls multiple physiological processes in ECs,regulat...Endothelial cells(ECs)that reside on the surface of blood vessels are constantly exposed to mechanical stimulation,including shear stress.Fluid shear stress(FSS)controls multiple physiological processes in ECs,regulating various pathways that maintain vascular tone and homeostasis function.The complexity of in vivo biological systems raises a demand for better in vitro techniques,which can generate FSS to closely mimic the cellular microenvironment.Through the rational design and use of flow chamber devices,in vitro fluidic systems are critical for a deeper understanding of endothelial responses to various shear conditions.The paper describes principal types of FSS systems,including functional attributes,development process and recent experiments on ECs.Finally,we prospect their possible contribution in the field of endothelial diseases.展开更多
GTPase-activating SH3 domain-binding protein 2(G3BP2)is a mediator that responds to environmental stresses through stress granule formation and is involved in the progression of chronic diseases.However,no studies hav...GTPase-activating SH3 domain-binding protein 2(G3BP2)is a mediator that responds to environmental stresses through stress granule formation and is involved in the progression of chronic diseases.However,no studies have examined the contribution of G3BP2 in the oscillatory shear stress(OSS)-induced endothelial dysfunction.Here we assessed the effects of G3BP2 in endothelial cells(ECs)function and investigated the underlying mechanism.Using shear stress apparatus and partial ligation model,we identified that stress granulerelated genes in ECs could be induced by OSS with RNA-seq,and then confirmed that G3BP2 was highly and specifically expressed in athero-susceptible endothelia in the OSS regions.G3bp2e/eApoee/e mice had significantly decreased atherosclerotic lesions associated with deficiency of G3BP2 in protecting endothelial barrier function,decreasing monocyte adhesion to ECs and inhibiting the proinflammatory cytokine levels.Furthermore,loss of G3BP2 diminished OSS-induced inflammation in ECs by increasing YAP nucleocytoplasmic shuttling and phosphorylation.These data demonstrate that G3BP2 is a critical OSS regulated gene in regulating ECs function and that G3BP2 inhibition in ECs is a promising atheroprotective therapeutic strategy.展开更多
Differentiation of bone marrow mesenchymal stem cells (MSCs) into endothelial cells (EC) is characterized by the expression of specific endothelial marker genes. Mechanical stimulations play potential effects in EC or...Differentiation of bone marrow mesenchymal stem cells (MSCs) into endothelial cells (EC) is characterized by the expression of specific endothelial marker genes. Mechanical stimulations play potential effects in EC oriented differentiation of MSCs. However, molecular mechanisms of endothelial differentiation from MSCs have not been defined.Histone acetylations play important roles in regulating gene expression. Histone acetylation status is maintained by histone acetyltransferase (HAT) and histone deacetylases (HDACs). Our previous work described that VEGF and laminar shear stress (SS) work together in determining EC oriented differentiation of MSC. Trichostatin A (TSA) is one of the lustone deacetylase inhibitor. In this study, we found that both TSA and SS could induce EC oriented differentiation of MSCs. And TSA combined with SS showed more powerful influence on the EC oriented differentiation of MSCs.展开更多
基金supported by NUS Academic Research Fund (R-263-000-483-112)
文摘A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.
基金the Innovative Research Team of Taizhou Polytechnic College(No.TZYTD-16-4)Natural Science Research General Project of Jiangsu Higher Education Institutions(No.18KJD350002)the Doctoral Research Foundation of Taizhou Polytechnic College(No.1322819004).
文摘Focal adhesions are polyproteins linked to extracellular matrix and cytoskeleton,which play an important role in the process of transforming force signals into intracellular chemical signals and subsequently triggering related physiological or pathological reactions.The cytoskeleton is a network of protein fibers in the cytoplasm,which is composed of microfilaments,microtubules,intermediate filaments,and cross-linked proteins.It is a very important structure for cells to maintain their basic morphology.This review summarizes the process of fluid shear stress transduction mediated by focal adhesion and the key role of the cytoskeleton in this process,which focuses on the focal adhesion and cytoskeleton systems.The important proteins involved in signal transduction in focal adhesion are introduced emphatically.The relationship between focal adhesion and mechanical transduction pathways are discussed.In this review,we discuss the relationship between fluid shear stress and associated diseases such as atherosclerosis,as well as its role in clinical research and drug development.
基金Supported by National Key R&D Program of China,No.2017YFC1104703National Natural Science Foundation of China,No.31771042 and No.11302020.
文摘Stem cell transplantation is an appealing potential therapy for vascular diseases and an indispensable key step in vascular tissue engineering.Substantial effort has been made to differentiate stem cells toward vascular cell phenotypes,including endothelial cells(ECs)and smooth muscle cells.The microenvironment of vascular cells not only contains biochemical factors that influence differentiation but also exerts hemodynamic forces,such as shear stress and cyclic strain.More recently,studies have shown that shear stress can influence the differentiation of stem cells toward ECs.A deep understanding of the responses and underlying mechanisms involved in this process is essential for clinical translation.This review highlights current data supporting the role of shear stress in stem cell differentiation into ECs.Potential mechanisms and signaling cascades for transducing shear stress into a biological signal are proposed.Further study of stem cell responses to shear stress will be necessary to apply stem cells for pharmacological applications and cardiovascular implants in the realm of regenerative medicine.
基金the National Natural Science Foundation of China(No.10472027) the NUS Academic Research Fund(No.R-263-000-483-112)
文摘In consideration of the mechanism for shear-stress-induced Ca^2+ influx via ATP(adenosine triphosphate)-gated ion channel P2X4 in vascular endothelial cells, a modified model is proposed to describe the shear-stress-induced Ca^2+ influx. It is affected both by the Ca^2+ gradient across the cell membrane and extracellular ATP concentration on the cell surface. Meanwhile, a new static ATP release model is constructed by using published experimental data. Combining the modified intracellular calcium dynamics model with the new ATP release model, we establish a nonlinear Ca^2+ dynamic system in vascular endothelial cells. The ATP-mediated calcium response in vascular endothelial cells subjected to shear stresses is analyzed by solving the governing equations of the integrated dynamic system. Numerical results show that the shear-stress-induced calcium response predicted by the proposed model is more consistent with the experimental observations than that predicted by existing models.
文摘Many in vitro studies focus on effects of wall shear stress (WSS) and wall shear stress gradient (WSSG) on endothelial cells, which are linked to the initiation and progression of atherosclerosis in the arterial system. Limitation in available flow chambers with a constant WSSG in the testing region makes it difficult to quantify cellular responses to WSSG. The current study proposes and characterizes a type of converging parallel plate flow chamber (PPFC) featuring a constant gradient of WSS. A simple formula was derived for the curvature of side walls, which relates WSSG to flow rate (Q), height of the PPFC (h), length of the convergent section (L), its widths at the entrance (w0) and exit (w1). CFD simulation of flow in the chamber is carried out. Constant WSSG is observed in most regions of the top and bottom plates except those in close proximity of side walls. A change in Q or h induces equally proportional changes in WSS and WSSG whereas an alteration in the ratio between w0 and w1 results in a more significant change in WSSG than that in WSS. The current design makes possible an easy quantification of WSSG on endothelial cells in the flow chamber.
基金the National Natural Science Foundation of China (39970269)
文摘Objective: To determine the effect of antiparallel phosphorothioate triplex-forming oligonucleotide (apsTFO), which was designed according to shear stress response element (SSRE) in tissue factor (TF) gene promoter region, on the expression of endothelial TF in carotid artery stenosis rats. Methods: Rat model of severe carotid artery stenosis were inflicted by silica gel tube ligation. Half an hour before the model infliction, GT20-apsTFO, GT20-psTFO and GT21-apsTFO labeled with green fluorescence (FITC) were injected into the vena caudalis of rat at a dose of 0.5 mg/kg. Half an hour, 4 or 9 h after the ligation, the distribution of TFO in the common carotid artery, the liver and the kidney was detected with aid of fluorescence microscopy. And the mRNA and protein expressions of TF, Egr-1 and Spl in the above-mentioned organs were determined with in situ hybridization and immunohistochemical assay respectively in 6 h after the model establishment, and the results were analyzed with an image analysis system. Results: Only in 1 h after TFO injection, fluorescent granules appeared in the liver, the kidney and the vascular wall and lumen of carotid artery, and then in 4.5 h, they still deposited in above sites except the vascular lumen. GT20-apsTFO and GT21-apsTFO significant down-regulated the mRNA and protein expressions of TF compared to the rats without treatment (P〈0.05), and the former apsTFO had a more stronger effect than the later (P〈0.05). GT20-psTFO had no such effect (P〉0.05). The 3 TFOs had no inhibition on the mRNA and protein expressions of Egr-1 and Spl. Conclusion: Pretreated apsTFO can partly come into the vascular endothelial cells, and inhibit TF expression induced by shear stress, but had no effect on Egr-1 and Spl gene expressions.
基金supported by grants from the National Natural Science Foundation of China,Nos10732070,10702043,30970703,10972140 and 30470432
文摘Instruction Shear stress,caused by the parallel frictional drag force of blood flow,is a biomechanical force which plays an important role in the control of blood vessels growth and functions [1]. Clinical researches had found out that atherosclerotic le-
文摘Background: Low shear stress caused by disturbed or turbulent flow at arterial branch points is known to associate with atherosclerosis. However, shear stress at the venous valve location and its association with deep vein thrombosis are less understood due to the complex and poorly understood bi-directional flow in the valve pocket region. We investigated how venous endothelial cells respond to flow shear stress around the venous valve region using a novel in vitro system that mimics venous flow. Results: Human umbilical vein EAhy. 926 cells were cultured on a flexible silastic membrane that mimicked venous tissue. Confluent cells were exposed to sinusoidal uni-and bi-directional pulsatile shear stress (0.1 to 1 dyne/cm2) for up to 6 h. Western-blot analyses indicated that endothelial nitric oxide (eNOS) expression levels decreased regardless of all tested flow patterns, stress magnitude, and shearing time. In contrast, the expression levels of inhibitor of κB (kappa B) and α (alpha)-tubulin were unaffected by the shear stress. Conclusions: Our results indicate that shear stress causes a decrease specifically in eNOS expression, suggesting that it may play a significant role in regulating inflammation related protein expression in endothelial cells.
文摘Laminar shear stress (LSS) due to pulsatile blood flow enhances endothelial function by multiple mechanisms including NO production. Red wine and its constituent, resveratrol, have also been postulated to provide vascular protective effects. The aim of the present study was to compare the effects of mechanical LSS and pharmacological resveratrol treatments on the endothelial citrulline-NO cycle. Human umbilical vein endothelial cells (HUVECs) were treated with LSS (12 dyn·cm-2) or resveratrol (25 - 100 μM). The expressions of argininosuccinate synthetase 1 (ASS1), argininosuccinate lyase (ASL), nitric oxide synthase 3 (NOS3) and cationic amino acid transporter 1 (CAT1), and the production of NO were determined. The expressions of Kruppel-like factor (KLF) 2 and KLF4 as upstream regulators of ASS1 and NOS3 were also analyzed. LSS strongly increased the mRNA levels of ASS1 (8.3 fold) and NOS3 (5.4 fold) without significant effects on ASL and CAT1 mRNAs. Resveratrol increased the ASS1 mRNA level in a dose-dependent manner up to 3.8 fold at 100 μM. The effects of resveratrol on the expressions of KLF2 and KLF4 mRNAs were smaller than those of LSS. Protein levels of ASS1 and NOS3, and NO production were markedly increased by LSS but resveratrol (50 μM) increased only ASS1 protein level. The results of the current study showed that LSS had greater effects on the citrulline-NO cycle activity leading to NO production, compared to resveratrol. Because resveratrol was not so effective at stimulating the endothelial citrulline-NO cycle, further studies are needed to find more potent drugs that increase the expression of ASS1 and NOS3 genes.
文摘he potential benefits of endothelial cell seeding depend not only on effective cell attachment, but also on the ability of the cells to resist the shear stresses of blood flow. The shear stressresistance of cultured adult human endothelial cells was investigated on 6mm polytetrafluoroethylene vascular grafts (made in China). Endothelial cells were sodded onto pretreated vascular grafts at a high density. Grafts were then cultivated for 9 days to enable the maturation of thecytoskeleton, before they were exposed to pulsatile flow simulating the flow patterns and the wallshear forces of the small srtery. After 1 hour of per fusion,a cell loss of 11% in grafts pretreatedwith 20μ g/ ml fibronectin and of 12% in grafts pretreated with 5μ g /ml fibronectin coated human platelet- poor- plasma (p>0. 50 n = 10). Therefore we conclude that the endothelial celllining on vascular grafts pretreated with suitable substrates can form a shear stress-resistant endothelial cell monolayer on polytetrafluoroethylene vascular grafts.
基金supported by the National Natural Science Foundation of China(12032007,31971242)to G.W.the Chongqing Science and Technology Bureau(cstc2019jcyj-zdxmX0028)to G.W.JinFeng Laboratory,Chongqing,China(jfkyjf202203001)to G.W.
文摘Nanoparticles(NPs)hold tremendous targeting potential in cardiovascular disease and regenerative medicine,and exciting clinical applications are coming into light.Vascular endothelial cells(ECs)exposure to different magnitudes and patterns of shear stress(SS)generated by blood flow could engulf NPs in the blood.However,an unclear understanding of the role of SS on NP uptake is hindering the progress in improving the targeting of NP therapies.Here,the temporal and spatial distribution of SS in vascular ECs and the effect of different SS on NP uptake in ECs are highlighted.The mechanism of SS affecting NP uptake through regulating the cellular ROS level,endothelial glycocalyx and membrane fluidity is summarized,and the molecules containing clathrin and caveolin in the engulfment process are elucidated.SS targeting NPs are expected to overcome the current bottlenecks and change the field of targeting nanomedicine.This assessment on how SS affects the cell uptake of NPs and the marginalization of NPs in blood vessels could guide future research in cell biology and vascular targeting drugs.
基金This work was supported by the Key Project(12032007)General Project(31971301,31971242)of National Natural Science Foundation of China,the Chongqing Natural Science Foundation(cstc2019jcyj-zdxmX0028,cstc2019jcyj-xfkxX0004)and Fundamental Research Funds for Central Universities(2019CDYGZD008,2019CDYGYB016,2021CDJCGJ007).We gratefully thank the other staff of the Public Experiment Centre of State Bioindustrial Base(Chongqing)for providing technical support and assistance in data collection and analysis.
文摘Extracellular vesicles(EVs)are increasingly used as delivery vehicles for drugs and bioactive molecules,which usually require intravascular administration.The endothelial cells covering the inner surface of blood vessels are susceptible to the shear stress of blood flow.Few studies demonstrate the interplay of red blood cell-derived EVs(RBCEVs)and endothelial cells.Thus,the phagocytosis of EVs by vascular endothelial cells during blood flow needs to be elucidated.In this study,red blood cell-derived extracellular vesicles(RBCEVs)were constructed to investigate endothelial cell phagocytosis in vitro and animal models.Results showed that low magnitude shear stress including low shear stress(LSS)and oscillatory shear stress(OSS)could promote the uptake of RBCEVs by endothelial cells in vitro.In addition,in zebrafish and mouse models,RBCEVs tend to be internalized by endothelial cells under LSS or OSS.Moreover,RBCEVs are easily engulfed by endothelial cells in atherosclerotic plaques exposed to LSS or OSS.In terms of mechanism,oxidative stress induced by LSS is part of the reason for the increased uptake of endothelial cells.Overall,this study shows that vascular endothelial cells can easily engulf EVs in areas of low magnitude shear stress,which will provide a theoretical basis for the development and utilization of EVs-based nano-drug delivery systems in vivo.
基金This project was supported by the National Natural Science Foundation of China(Nos.U20A20390,11827803 and 11302020).
文摘Endothelial cells(ECs)that reside on the surface of blood vessels are constantly exposed to mechanical stimulation,including shear stress.Fluid shear stress(FSS)controls multiple physiological processes in ECs,regulating various pathways that maintain vascular tone and homeostasis function.The complexity of in vivo biological systems raises a demand for better in vitro techniques,which can generate FSS to closely mimic the cellular microenvironment.Through the rational design and use of flow chamber devices,in vitro fluidic systems are critical for a deeper understanding of endothelial responses to various shear conditions.The paper describes principal types of FSS systems,including functional attributes,development process and recent experiments on ECs.Finally,we prospect their possible contribution in the field of endothelial diseases.
基金This work was supported by the National Natural Science FoundationofChina(No.31971242 and12032007 toG.W.)The Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-zdxmX0028 to G.W.,cstc2019jcyj-xfkxX0004 to J.Q.)+2 种基金Open Fund of Tianjin Enterprise Key Laboratory on Hyaluronic Acid Application Research,China(No.KTRDHAY201903 to G.W.)The Fundamental Research Funds for the Central Universities,China(No.2019CDYGZD008 to J.Q.)Chongqing Municipal Education Commission,China(No.KYYJ202001 to G.W.).
文摘GTPase-activating SH3 domain-binding protein 2(G3BP2)is a mediator that responds to environmental stresses through stress granule formation and is involved in the progression of chronic diseases.However,no studies have examined the contribution of G3BP2 in the oscillatory shear stress(OSS)-induced endothelial dysfunction.Here we assessed the effects of G3BP2 in endothelial cells(ECs)function and investigated the underlying mechanism.Using shear stress apparatus and partial ligation model,we identified that stress granulerelated genes in ECs could be induced by OSS with RNA-seq,and then confirmed that G3BP2 was highly and specifically expressed in athero-susceptible endothelia in the OSS regions.G3bp2e/eApoee/e mice had significantly decreased atherosclerotic lesions associated with deficiency of G3BP2 in protecting endothelial barrier function,decreasing monocyte adhesion to ECs and inhibiting the proinflammatory cytokine levels.Furthermore,loss of G3BP2 diminished OSS-induced inflammation in ECs by increasing YAP nucleocytoplasmic shuttling and phosphorylation.These data demonstrate that G3BP2 is a critical OSS regulated gene in regulating ECs function and that G3BP2 inhibition in ECs is a promising atheroprotective therapeutic strategy.
基金National Natural Science Foundation of Chinagrant number:10925208,11120101001,10802006 and 10972024+1 种基金NFundamental Research Funds for the Central Universitiesgrant number:YWF-10-02-065
文摘Differentiation of bone marrow mesenchymal stem cells (MSCs) into endothelial cells (EC) is characterized by the expression of specific endothelial marker genes. Mechanical stimulations play potential effects in EC oriented differentiation of MSCs. However, molecular mechanisms of endothelial differentiation from MSCs have not been defined.Histone acetylations play important roles in regulating gene expression. Histone acetylation status is maintained by histone acetyltransferase (HAT) and histone deacetylases (HDACs). Our previous work described that VEGF and laminar shear stress (SS) work together in determining EC oriented differentiation of MSC. Trichostatin A (TSA) is one of the lustone deacetylase inhibitor. In this study, we found that both TSA and SS could induce EC oriented differentiation of MSCs. And TSA combined with SS showed more powerful influence on the EC oriented differentiation of MSCs.