Intrusion of quartz-monzodioritic igneous bodies of Oligocene age into Eocene lithic crystal tufts and trachy-basalts resulted in the occurrence of a widespread argillic alteration zone in the Jizvan district (northe...Intrusion of quartz-monzodioritic igneous bodies of Oligocene age into Eocene lithic crystal tufts and trachy-basalts resulted in the occurrence of a widespread argillic alteration zone in the Jizvan district (northern Iran). Mineralogically, the argillie alteration zone includes minerals such as kaolinite, quartz, smectite, pyrophyllite, muscovite-illite, alunite, rutile, calcite, feldspar, chlorite, hematite and goethite. Therefore, the non-CHARAC behaviour for trace elements in the argillic samples is reflected in the non-chondritic Y/Ho and Zr/Hf ratios and the irregular REE patterns, which appear related to the tetrad effect phenomenon. The chondrite-normalized REE distribution patterns indicate both concave (W-shaped) and convex (M-shaped) tetrad effects in the argillic samples. Based on the field evidence and the results from geochemical studies, it can be concluded that the samples from the argillic alteration zone having high fourth tetrad effect values (〉0.30) were developed in the fault and breccia zones. The results indicate that factors such as preferential scavenging by Mn-oxides, crystallization of clay minerals, fluid-rock interaction, overprint of hypogene mineral assemblage by supergene ones, and the structural control, have all played an important role in the occurrence of tetrad effects in samples of the argillic zone in the Jizvan district.展开更多
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained ...A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicarbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms,independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.展开更多
Chol-qeshlaghi altered area lies in the northwestern part of the post-collisional Urumieh-Dokhtar magmatic arc, NW Iran. Pervasive silicic, argillic, phyllic and propylitic altered zones appears to be intimately affil...Chol-qeshlaghi altered area lies in the northwestern part of the post-collisional Urumieh-Dokhtar magmatic arc, NW Iran. Pervasive silicic, argillic, phyllic and propylitic altered zones appears to be intimately affiliated to the fluids derivative of upper Oligocene Khankandi granodiorite. This paper is dedicated to the identification of geochemical characteristics of hydrothermal alterations, focusing on the determination of the mass gains and losses of REEs, to gain significant insights regarding the chemical exchanges prevailed between the host rocks and hydrothermal fluids. The low pH and high activity of SO4-2 ligands in silicic alteration fluids, resulting in depletion of entire REEs. Decreasing of LREEs appeared in argillic zone may attributed to reduce in adsorption ability of clay minerals in low pH;whereas HREEs enrichment in phyllic zone was inclined to put it down to the abundance of sericite(± Fe oxides). A significant reduction of Eu/Eu* ratio in silicic zone can be attributed to negligible sulfides and clay minerals as some effective agents in adsorption of released Eu+2. Factors such as changes in pH, the abundance of absorptive neomorph mineral phases, activity of ligands play an important role in controlling the distribution and concentration of REEs in Chol-qeshlaghi alteration system.展开更多
The reservoir of the Xing'anling Group in the Beier depression of the Hailar basin is loosely cemented with many tuffaceous grains.This causes argillization and collapse of the grain framework of the reservoir san...The reservoir of the Xing'anling Group in the Beier depression of the Hailar basin is loosely cemented with many tuffaceous grains.This causes argillization and collapse of the grain framework of the reservoir sandstones.A detailed study on the characteristics of rocks and minerals was carried out through polarized microscope,X-ray diffraction,X-ray fluorescence,SEM and energy spectrum analysis.The results indicate that the reason for argillization is the abundant pyroclastic,and especially tuffaceous,grains in the reservoir.The alkaline component is relatively high in some strata.These are easily altered to montmorillonite in diagenesis.Na+montmorillonite swells strongly when exposed to water.This is the fundamental reason for the reservoir's argillization and plugging.展开更多
Based on the characteristics of surrounding rocks for deeply inclined roadway affected by argillation and water seepage, a structure model of layer crack plate was established to analyze the shear sliding instability ...Based on the characteristics of surrounding rocks for deeply inclined roadway affected by argillation and water seepage, a structure model of layer crack plate was established to analyze the shear sliding instability mechanism. Through solid mechanics analysis of anchored surrounding rock with defect from water seepage, combined with numerical analysis for instability mechanism under water seepage in deeply inclined roadway, key factors were proposed. Results show that with increasing height of layer crack plate, lateral buckling critical load value for high wall of the roadway decreases; there is a multistage distribution for tensile stress along the anchor bolt with defect under pulling state condition;groundwater seepage seriously affects the strength of surrounding rock of the roadway, to some extent the plastic zone of the high side rises up to 8 m. Finally some support strategies were proposed for the inclined roadway and successfully applied to Haoyuan coal mine in Tiela mining area,western China.展开更多
基金supported financially by the Research Bureau of Urmia University
文摘Intrusion of quartz-monzodioritic igneous bodies of Oligocene age into Eocene lithic crystal tufts and trachy-basalts resulted in the occurrence of a widespread argillic alteration zone in the Jizvan district (northern Iran). Mineralogically, the argillie alteration zone includes minerals such as kaolinite, quartz, smectite, pyrophyllite, muscovite-illite, alunite, rutile, calcite, feldspar, chlorite, hematite and goethite. Therefore, the non-CHARAC behaviour for trace elements in the argillic samples is reflected in the non-chondritic Y/Ho and Zr/Hf ratios and the irregular REE patterns, which appear related to the tetrad effect phenomenon. The chondrite-normalized REE distribution patterns indicate both concave (W-shaped) and convex (M-shaped) tetrad effects in the argillic samples. Based on the field evidence and the results from geochemical studies, it can be concluded that the samples from the argillic alteration zone having high fourth tetrad effect values (〉0.30) were developed in the fault and breccia zones. The results indicate that factors such as preferential scavenging by Mn-oxides, crystallization of clay minerals, fluid-rock interaction, overprint of hypogene mineral assemblage by supergene ones, and the structural control, have all played an important role in the occurrence of tetrad effects in samples of the argillic zone in the Jizvan district.
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
文摘A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicarbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms,independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.
文摘Chol-qeshlaghi altered area lies in the northwestern part of the post-collisional Urumieh-Dokhtar magmatic arc, NW Iran. Pervasive silicic, argillic, phyllic and propylitic altered zones appears to be intimately affiliated to the fluids derivative of upper Oligocene Khankandi granodiorite. This paper is dedicated to the identification of geochemical characteristics of hydrothermal alterations, focusing on the determination of the mass gains and losses of REEs, to gain significant insights regarding the chemical exchanges prevailed between the host rocks and hydrothermal fluids. The low pH and high activity of SO4-2 ligands in silicic alteration fluids, resulting in depletion of entire REEs. Decreasing of LREEs appeared in argillic zone may attributed to reduce in adsorption ability of clay minerals in low pH;whereas HREEs enrichment in phyllic zone was inclined to put it down to the abundance of sericite(± Fe oxides). A significant reduction of Eu/Eu* ratio in silicic zone can be attributed to negligible sulfides and clay minerals as some effective agents in adsorption of released Eu+2. Factors such as changes in pH, the abundance of absorptive neomorph mineral phases, activity of ligands play an important role in controlling the distribution and concentration of REEs in Chol-qeshlaghi alteration system.
文摘The reservoir of the Xing'anling Group in the Beier depression of the Hailar basin is loosely cemented with many tuffaceous grains.This causes argillization and collapse of the grain framework of the reservoir sandstones.A detailed study on the characteristics of rocks and minerals was carried out through polarized microscope,X-ray diffraction,X-ray fluorescence,SEM and energy spectrum analysis.The results indicate that the reason for argillization is the abundant pyroclastic,and especially tuffaceous,grains in the reservoir.The alkaline component is relatively high in some strata.These are easily altered to montmorillonite in diagenesis.Na+montmorillonite swells strongly when exposed to water.This is the fundamental reason for the reservoir's argillization and plugging.
基金provided by the Natural Science Foundation of Jiangsu Province(No.BK20141130)the Fundamental Research Funds for the Central Universities(Nos.2014QNB27 and 2010QNB22)
文摘Based on the characteristics of surrounding rocks for deeply inclined roadway affected by argillation and water seepage, a structure model of layer crack plate was established to analyze the shear sliding instability mechanism. Through solid mechanics analysis of anchored surrounding rock with defect from water seepage, combined with numerical analysis for instability mechanism under water seepage in deeply inclined roadway, key factors were proposed. Results show that with increasing height of layer crack plate, lateral buckling critical load value for high wall of the roadway decreases; there is a multistage distribution for tensile stress along the anchor bolt with defect under pulling state condition;groundwater seepage seriously affects the strength of surrounding rock of the roadway, to some extent the plastic zone of the high side rises up to 8 m. Finally some support strategies were proposed for the inclined roadway and successfully applied to Haoyuan coal mine in Tiela mining area,western China.