In order to improve production and breed new broods of bay scallop Argopecten irradians irradians, different-colored orange, purple and white lines were established by two mating methods of self-fertilization and mass...In order to improve production and breed new broods of bay scallop Argopecten irradians irradians, different-colored orange, purple and white lines were established by two mating methods of self-fertilization and mass spawning at a commercial scallop hatchery in spring, 2002. And then larval growth and survival of different lines was compared to test whether there is a relationship between shell color and growth and survival at early developmental stage. Both growth and survival have no significant differences among different experimental larvae of self-fertilization or mass spawning. Results are as following in the order of orange, purple and white shell stock. For the self-fertilization, growth rates of larvae were 6.174, 6.412, and 6.599 μm/d, respectively. Survival rates of larvae at Day 3 were 74.41%, 76.86%, and 82.05%; Day 6 were 49.14%, 65.63%, and 52.79%; and Day 9 were 25.06%, 20.80%, and 26.47%, respectively. For the mass spawning, the growth rates were 7.836, 7.941, and 7.878 μm/d, respectively. Survival rates at Day 3 were 93.05%, 91.95%, and 92.50%; Day 6 were 79.17%, 78.05%, and 82.50%; and Day 9 were 34.72%, 36.67%, and 38.33%, respectively. The absence of any relationship between shell color and growth and survival at the larval stage may be resulted from their common genetic basis.展开更多
In 2002, six cohorts ofbroodstock bay scallop Argopecten irradians irradians (Ne=1, 2, 10, 30, 50 and control) were randomly chosen from a population of bay scallop to produce offspring. After one year rearing, with...In 2002, six cohorts ofbroodstock bay scallop Argopecten irradians irradians (Ne=1, 2, 10, 30, 50 and control) were randomly chosen from a population of bay scallop to produce offspring. After one year rearing, with the progeny matured, the similar experiment was done to produce the F2 generation. To determine the magnitude of Ne effects, the growth and survival rates in larvae and adult of six F2 groups were compared. Results showed that inbreeding depression existed not only in the Ne=1 group but also in the Ne=2 group. The growth and survival rates of the two groups were significantly lower than those of the other groups (Ne=10, 30, 50, control), and there were no significant differences among the latter (P〉0.05). At the same time, the amount of depression in the Ne=1 group was significantly higher than that of the Ne=2 group (P〈0.05). These results indicated that the low effective population size (Ne), which increases the possibility of inbreeding, could lead to some harmful effects on the offspring. So it is essential to maintain a high level of Ne in commercial seed production. Fta'thermore, as the high fecundity of bay scallop might lead to increased inbreeding, selecting broodstock from different growout sites is recommended.展开更多
基金This work was financially supported by Project of Scientific Innova-tion, Chinese Academy of Sciences (ZKCX2-211).
文摘In order to improve production and breed new broods of bay scallop Argopecten irradians irradians, different-colored orange, purple and white lines were established by two mating methods of self-fertilization and mass spawning at a commercial scallop hatchery in spring, 2002. And then larval growth and survival of different lines was compared to test whether there is a relationship between shell color and growth and survival at early developmental stage. Both growth and survival have no significant differences among different experimental larvae of self-fertilization or mass spawning. Results are as following in the order of orange, purple and white shell stock. For the self-fertilization, growth rates of larvae were 6.174, 6.412, and 6.599 μm/d, respectively. Survival rates of larvae at Day 3 were 74.41%, 76.86%, and 82.05%; Day 6 were 49.14%, 65.63%, and 52.79%; and Day 9 were 25.06%, 20.80%, and 26.47%, respectively. For the mass spawning, the growth rates were 7.836, 7.941, and 7.878 μm/d, respectively. Survival rates at Day 3 were 93.05%, 91.95%, and 92.50%; Day 6 were 79.17%, 78.05%, and 82.50%; and Day 9 were 34.72%, 36.67%, and 38.33%, respectively. The absence of any relationship between shell color and growth and survival at the larval stage may be resulted from their common genetic basis.
基金This study was supported by the Project of Scientific Innovation of the Chinese Academy of Sciences under contract No.ZKCX2-211the Science and Technology Plans of Shandong Province under contract No.022110107the Science and Technology Plans of Qingdao under contract No.03-1-HH-10.
文摘In 2002, six cohorts ofbroodstock bay scallop Argopecten irradians irradians (Ne=1, 2, 10, 30, 50 and control) were randomly chosen from a population of bay scallop to produce offspring. After one year rearing, with the progeny matured, the similar experiment was done to produce the F2 generation. To determine the magnitude of Ne effects, the growth and survival rates in larvae and adult of six F2 groups were compared. Results showed that inbreeding depression existed not only in the Ne=1 group but also in the Ne=2 group. The growth and survival rates of the two groups were significantly lower than those of the other groups (Ne=10, 30, 50, control), and there were no significant differences among the latter (P〉0.05). At the same time, the amount of depression in the Ne=1 group was significantly higher than that of the Ne=2 group (P〈0.05). These results indicated that the low effective population size (Ne), which increases the possibility of inbreeding, could lead to some harmful effects on the offspring. So it is essential to maintain a high level of Ne in commercial seed production. Fta'thermore, as the high fecundity of bay scallop might lead to increased inbreeding, selecting broodstock from different growout sites is recommended.