期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Characterizing the spatiotemporal variations of evapotranspiration and aridity index in mid-western China from 2001 to 2016 被引量:1
1
作者 MU Le LU Yixiao +2 位作者 LIU Minguo YANG Huimin FENG Qisheng 《Journal of Arid Land》 SCIE CSCD 2021年第12期1230-1243,共14页
Mid-western China is one of the most sensitive and fragile areas on the Earth.Evapotranspiration(ET)is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities... Mid-western China is one of the most sensitive and fragile areas on the Earth.Evapotranspiration(ET)is a key part of hydrological cycle in these areas and is affected by both global climate change and human activities.The dynamic changes in ET and potential evapotranspiration(PET),which can reflect water consumption and demand,are still unclear,and there is a lack of predictive capacity on drought severity.In this study,we used global MODIS(moderate-resolution imaging spectroradiometer)terrestrial ET(MOD16)products,Morlet wavelet analysis,and simple linear regression to investigate the spatiotemporal variations of ET,PET,reference ET(ET0),and aridity index(AI)in mid-western pastoral regions of China(including Gansu Province,Qinghai Province,Ningxia Hui Autonomous Region,and part of Inner Mongolia Autonomous Region)from 2001 to 2016.The results showed that the overall ET gradually increased from east to southwest in the study area.Actual ET showed an increasing trend,whereas PET tended to decrease from 2001 to 2016.The change in ET was affected by vegetation types.During the study period,the average annual ET0 and AI tended to decrease.At the monthly scale within a year,AI value decreased from January to July and then increased.The interannual variations of ET0 and AI showed periodicity with a main period of 14 a,and two other periodicities of 11 and 5 a.This study showed that in recent years,drought in these pastoral regions of mid-western China has been alleviated.Therefore,it is foreseeable that the demand for irrigation water for agricultural production in these regions will decrease. 展开更多
关键词 EVAPOTRANSPIRATION aridity index climate change human activities vegetation cover arid areas
下载PDF
Year aridity index patterns in northwest China and the relationship to summer North Atlantic sea surface temperature
2
作者 YAN Yan ZHAO Xinyi ZHOU Liping 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第3期161-171,共11页
Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index v... Aim to linking the variability of drought in northwest China to the oceanic influence of North Atlantic SSTs at the background of global warming and at the regional climate change shifting stages, year aridity index variations in northwest China and summer North Atlantic sea surface temperature (SST) variations are examined for the 44 a period of 1961-2004 using singular value decomposition (SVD) analysis. Results show that the SST anomalies (SSTA)in the North Atlantic in summer reflected three basic models. The first SVD mode of SST pattern shows a dipole - like variation with the positive center located at southwest and negative center at northeast of extratropical North Atlantic. And it strongly relates to the positive trend in AI variation in northwest China. The second coupled modes display the coherent positive anomalies in extratropical North Atlantic SST and the marked opposite trend of AI variability between north and south of Xinjiang. In addition, the lag correlation analysis of the first mode of SSTA and geopotential heights at 500 hPa variations also shows that the indication of the former influencing the latter configuration, which result in higher air temperature and less precipitation when the SSTA in the North Atlantic Ocean in summer motivated Eurasian circulation of EA pattern, further to influence the wet - dry variations in northwest China by the ocean-to - atmosphere forcing. 展开更多
关键词 aridity index SSTA teleconnection patterns SVD
下载PDF
Spatiotemporal variations of aridity index over the Belt and Road region under the 1.5℃ and 2.0℃ warming scenarios 被引量:2
3
作者 ZHOU Jian JIANG Tong +4 位作者 WANG Yanjun Su Buda TAO Hui QIN Jiancheng ZHAI Jianqing 《Journal of Geographical Sciences》 SCIE CSCD 2020年第1期37-52,共16页
Aridity index reflects the exchanges of energy and water between the land surface and the atmosphere,and its variation can be used to forecast drought and flood patterns,which makes it of great significance for agricu... Aridity index reflects the exchanges of energy and water between the land surface and the atmosphere,and its variation can be used to forecast drought and flood patterns,which makes it of great significance for agricultural production.The ratio of potential evapotranspiration and precipitation is applied to analyse the spatial and temporal distributions of the aridity index in the Belt and Road region under the 1.5℃and 2.0℃global warming scenarios on the basis of outputs from four downscaled global climate models.The results show that:(1)Under the 1.5℃warming scenario,the area-averaged aridity index will be similar to that in 1986-2005(around 1.58),but the changes vary spatially.The aridity index will increase by more than 5%in Central-Eastern Europe,north of West Asia,the monsoon region of East Asia and northwest of Southeast Asia,while it is projected to decrease obviously in the southeast of West Asia.Regarding the seasonal scale,spring and winter will be more arid in South Asia,and the monsoon region of East Asia will be slightly drier in summer compared with the reference period.While,West Asia will be wetter in all seasons,except winter.(2)Relative to 1986-2005,both areal averaged annual potential evapotranspiration and precipitation are projected to increase,and the spatial variation of aridity index will become more obvious as well at the 2.0℃warming level.Although the aridity index over the entire region will be maintained at approximately 1.57 as that in 1.5℃,the index in Central-Eastern Europe,north of West Asia and Central Asia will grow rapidly at a rate of more than 20%,while that in West Siberia,northwest of China,the southern part of South Asia and West Asia will show a declining trend.At the seasonal scale,the increase of the aridity index in Central-Eastern Europe,Central Asia,West Asia,South Asia and the northern part of Siberia in winter will be obvious,and the monsoon region in East Asia will be drier in both summer and autumn.(3)Under the scenario of an additional 0.5℃increase in global temperature from 1.5℃to 2.0℃,the aridity index will increase significantly in Central Asia and north of West Asia but decrease in Southeast Asia and Central Siberia.Seasonally,the aridity index in the Belt and Road region will slightly increase in all other seasons except spring.Central Asia will become drier annually at a rate of more than 20%.The aridity index in South Asia will increase in spring and winter,and that in East Asia will increase in autumn and winter.(4)To changes of the aridity index,the attribution of precipitation and potential evapotranspiration will vary regionally.Precipitation will be the major influencing factor over southern West Asia,southern South Asia,Central-Eastern Siberia,the non-monsoon region of East Asia and the border between West Asia and Central Asia,while potential evapotranspiration will exert greater effects over Central-Eastern Europe,West Siberia,Central Asia and the monsoon region of East Asia. 展开更多
关键词 1.5℃and 2.0℃global warming scenarios aridity index spatial and temporal variations the Belt and Road region
原文传递
Asymmetric Drying and Wetting Trends in Eastern and Western China 被引量:1
4
作者 Wen WU Fei JI +1 位作者 Shujuan HU Yongli HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期221-232,共12页
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ... As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China. 展开更多
关键词 aridity index EEMD dry/wet conditions asymmetric evolution
下载PDF
Long Term Spatio-temporal Variations of Seasonal and Decadal Aridity in India
5
作者 Pavan Kumar B Bhavani Pinjarla +1 位作者 P K Joshi P S Roy 《Journal of Atmospheric Science Research》 2021年第3期29-45,共17页
A comprehensive analysis of climate data(1958-2018)is carried out at the national scale in India to assess spatiotemporal variation in aridity.The aridity is analyzed using UNEP(United Nations Environment Programme)Ar... A comprehensive analysis of climate data(1958-2018)is carried out at the national scale in India to assess spatiotemporal variation in aridity.The aridity is analyzed using UNEP(United Nations Environment Programme)Aridity Index(AI),which is the ratio between Precipitation(P)and Potential Evapotranspiration(PET).Freely available Terra-Climate database,P and PET variables,offered an unprecedented opportunity for monitoring variations in AI and aridity index anomalies(AIA)at inter-seasonal and inter-decadal basis.The study also assesses longer term patterns of P and AI anomalies with vegetation anomalies.The results indicate that significant clustered areas with maximum dryness are located at west-central part of India,the state of Maharashtra.Overall,there is a gradual increase in the extent of arid zone during 60-year period and spatially maximum extent of percentage change in aridity area is observed.The change patterns of AI in India are largely driven by the changing patterns of precipitation.The maximum impact of decline in precipitation on AIA was observed during Kharif season frequently,for every 4-5 years during 1972-1992.The pattern repeated in the last few recent years(2013-2018),the decline in precipitation resulted increased aridity.The study also reveals that the availability and usage of irrigation sources have increased from 2014 to 2018.Thus,despite of less precipitation positive vegetation has been resulted in this period.The findings are important to understand the impacts of climate change on land use pattern,and land and water resource management. 展开更多
关键词 aridity index aridity index anomaly NDVI Potential evapotranspiration Precipitation SPI
下载PDF
Main Influencing Factors of Climatic Aridity in the Most Serious Increasing Aridity Region of North Chi- na
6
作者 Zhang Hongli Zhang Qiang Liu Xiaoyun 《Meteorological and Environmental Research》 CAS 2016年第1期23-29,共7页
Based on the data of monthly precipitation and other monthly meteorological elements of 661 meteorological stations over China from 1961 to 2013, the temporal evolution characteristics of aridity in Hetao area of Nort... Based on the data of monthly precipitation and other monthly meteorological elements of 661 meteorological stations over China from 1961 to 2013, the temporal evolution characteristics of aridity in Hetao area of North China which is drying significantly were studied by using REOF, and the effects of summer monsoon and meteorological factors on the aridity index were discussed. The results showed that climatic aridity in Hetac area of North China tended to increase with time during 1961 -2013. The annual variation and overall trend of climatic aridity in Hetao area of North China was mainly influenced by /SASM1 before the 1990s, and the degree of the influence weakened with global warming. There were certain differ- ences between annual and decadal variations in the effects of the meteorological elements on climatic aridity. The impact of the thermal factors on aridity index was more significant than the dynamic factor after the 1990s, revealing that climate warming aggravated climatic aridity in Hetao area of North China. 展开更多
关键词 Penman-Monteith model aridity index Summer monsoon Climate warming China
下载PDF
Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin 被引量:11
7
作者 WANG Jie LIU Dongwei +2 位作者 MA Jiali CHENG Yingnan WANG Lixin 《Journal of Arid Land》 SCIE CSCD 2021年第1期40-55,共16页
The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry o... The Aral Sea Basin in Central Asia is an important geographical environment unit in the center of Eurasia.It is of great significance to the ecological protection and sustainable development of Central Asia to carry out dynamic monitoring and effective evaluation of the eco-environmental quality of the Aral Sea Basin.In this study,the arid remote sensing ecological index(ARSEI)for large-scale arid areas was developed,which coupled the information of the greenness index,the salinity index,the humidity index,the heat index,and the land degradation index of arid areas.The ARSEI was used to monitor and evaluate the eco-environmental quality of the Aral Sea Basin from 2000 to 2019.The results show that the greenness index,the humidity index and the land degradation index had a positive impact on the quality of the ecological environment in the Aral Sea Basin,while the salinity index and the heat index exerted a negative impact on the quality of the ecological environment.The eco-environmental quality of the Aral Sea Basin demonstrated a trend of initial improvement,followed by deterioration,and finally further improvement.The spatial variation of these changes was significant.From 2000 to 2019,grassland and wasteland(saline alkali land and sandy land)in the central and western parts of the basin had the worst ecological environment quality.The areas with poor ecological environment quality are mainly distributed in rivers,wetlands,and cultivated land around lakes.During the period from 2000 to 2019,except for the surrounding areas of the Aral Sea,the ecological environment quality in other areas of the Aral Sea Basin has been improved in general.The correlation coefficients between the change in the eco-environmental quality and the heat index and between the change in the eco-environmental quality and the humidity index were–0.593 and 0.524,respectively.Climate conditions and human activities have led to different combinations of heat and humidity changes in the eco-environmental quality of the Aral Sea Basin.However,human activities had a greater impact.The ARSEI can quantitatively and intuitively reflect the scale and causes of large-scale and long-time period changes of the eco-environmental quality in arid areas;it is very suitable for the study of the eco-environmental quality in arid areas. 展开更多
关键词 eco-environmental quality arid remote sensing ecological index Moderate Resolution Imaging Spectroradiometer(MODIS) landscape changes remote sensing monitoring Central Asia
下载PDF
Dryland Expansion in Northern China from 1948 to 2008 被引量:12
8
作者 LI Yue HUANG Jianping +1 位作者 JI Mingxia RAN Jinjiang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期870-876,共7页
This study examines the expansion of drylands and regional climate change in northern China by analyzing the variations in aridity index (AI), surface air temperature (SAT), precipitation and potential evapotransp... This study examines the expansion of drylands and regional climate change in northern China by analyzing the variations in aridity index (AI), surface air temperature (SAT), precipitation and potential evapotranspiration (PET) from 1948 to 2008. It is found that the drylands of northern China have expanded remarkably in the last 61 years. The area of drylands of the last 15 years (1994--2008) is 0.65 × 106 km2 (12%) larger than that in the period 1948-62. The boundary of drylands has extended eastward over Northeast China by about 2 °of longitude and by about 1° of latitude to the south along the middle- to-lower reaches of the Yellow River. A zonal band of expansion of semi-arid regions has occurred, stretching from western Heilongjiang Province to southern Gansu Province, while shifts to the east of semi-arid regions in dry subhumid regions have also occurred. Results show that the aridity trend of drylands in northern China is highly correlated with the long-term trend of precipitation and PET, and the expansion of semi-arid regions plays a dominant role in the areal extent of drylands, which is nearly 10 times larger than that in arid and subhumid regions. 展开更多
关键词 aridity index dryland expansion climate variation northern China
下载PDF
Comparison of Dryland Climate Change in Observations and CMIP5 Simulations 被引量:5
9
作者 JI Mingxia HUANG Jianping +1 位作者 XIE Yongkun LIU Jun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第11期1565-1574,共10页
A comparison of observations with 20 climate model simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) revealed that observed dryland expansion amounted to 2.61 × 10^6 km^2 during the 58... A comparison of observations with 20 climate model simulations from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) revealed that observed dryland expansion amounted to 2.61 × 10^6 km^2 during the 58 years from 1948 to 2005, which was four times higher than that in the simulations (0.55 × 10^6 km^2). Dryland expansion was accompanied by a decline in aridity index (AI) (drying trend) as a result of decreased precipitation and increased potential evapotranspiration across all dryland subtype areas in the observations, especially in the semi-arid and dry subhumid regions. However, the CMIP5 multi-model ensemble (MME) average performed poorly with regard to the decreasing trends of AI and precipitation. By analyzing the factors controlling AI, we found that the overall bias of AI in the simulations, compared with observations, was largely due to limitations in the simulation of precipitation. The simulated precipitation over global drylands was substantially overestimated compared with observations across all subtype areas, and the spatial distribution of precipitation in the MME was largely inconsistent in the African Sahel, East Asia, and eastern Australia, where the semi-arid and dry subhumid regions were mainly located. 展开更多
关键词 aridity index dryland expansion climate change CMIP5
下载PDF
Stand-level biomass models for predicting C stock for the main Spanish pine species 被引量:4
10
作者 Ana Aguirre Miren del Río +1 位作者 Ricardo Ruiz-Peinado Sonia Condés 《Forest Ecosystems》 SCIE CSCD 2021年第2期387-402,共16页
Background:National and international institutions periodically demand information on forest indicators that are used for global reporting.Among other aspects,the carbon accumulated in the biomass of forest species mu... Background:National and international institutions periodically demand information on forest indicators that are used for global reporting.Among other aspects,the carbon accumulated in the biomass of forest species must be reported.For this purpose,one of the main sources of data is the National Forest Inventory(NFI),which together with statistical empirical approaches and updating procedures can even allow annual estimates of the requested indicators.Methods:Stand level biomass models,relating the dry weight of the biomass with the stand volume were developed for the five main pine species in the Iberian Peninsula(Pinus sylvestris,Pinus pinea,Pinus halepensis,Pinus nigra and Pinus pinaster).The dependence of the model on aridity and/or mean tree size was explored,as well as the importance of including the stand form factor to correct model bias.Furthermore,the capability of the models to estimate forest carbon stocks,updated for a given year,was also analysed.Results:The strong relationship between stand dry weight biomass and stand volume was modulated by the mean tree size,although the effect varied among the five pine species.Site humidity,measured using the Martonne aridity index,increased the biomass for a given volume in the cases of Pinus sylvestris,Pinus halepensis and Pinus nigra.Models that consider both mean tree size and stand form factor were more accurate and less biased than those that do not.The models developed allow carbon stocks in the main Iberian Peninsula pine forests to be estimated at stand level with biases of less than 0.2 Mg·ha^(-1).Conclusions:The results of this study reveal the importance of considering variables related with environmental conditions and stand structure when developing stand dry weight biomass models.The described methodology together with the models developed provide a precise tool that can be used for quantifying biomass and carbon stored in the Spanish pine forests in specific years when no field data are available. 展开更多
关键词 Martonne aridity index Dry weight biomass Carbon stock National Forest Inventory Peninsular pine forest Biomass expansion factor
下载PDF
Spatial variability and driving factors of soil multifunctionality in drylands of China 被引量:1
11
作者 ZHANG Shihang CHEN Yusen +5 位作者 LU Yongxing GUO Hao GUO Xing LIU Chaohong ZHOU Xiaobing ZHANG Yuanming 《Regional Sustainability》 2022年第3期223-232,共10页
Drylands are highly vulnerable to climate change and human activities.The drylands of China account for approximately 10.8%of global drylands,and China is the country most severely affected by aridity in Asia.Therefor... Drylands are highly vulnerable to climate change and human activities.The drylands of China account for approximately 10.8%of global drylands,and China is the country most severely affected by aridity in Asia.Therefore,studying the spatial variation characteristics in soil multifunctionality(SMF)and investigating the driving factors are critical for elucidating and managing the functions of dryland ecosystems in China.Based on the environmental factors(mean annual precipitation(MAP),mean annual temperature(MAT),solar radiation(Srad),soil acidity(pH),enhanced vegetation index(EVI),and cation exchange capacity(CEC))and aridity from the“dataset of soil properties for land surface modeling over China”,we used non-linear regression,ordinary least square(OLS)regression,structural equation model(SEM),and other analytical methods to investigate the relationships of SMF with environmental factors across different aridity levels in China.SMF in different dryland regions varied significantly and showed a patchy distribution,with SMF index values ranging from–1.21 to 2.42.Regions with SMF index values from–0.20 to 0.51 accounting for 63.0%of dryland area in China.OLS regression results revealed that environmental factors like MAP,MAT,Srad,pH,EVI,and CEC were significantly related to SMF(P<0.05).MAP and MAT were correlated to SMF at the whole aridity level(P<0.05).SEM results showed that the driving factors of SMF differed depending on the aridity level.Soil pH was the strongest driving factor of SMF when the aridity was less than 0.80(P<0.001).Both soil CEC and EVI had a positive effect on SMF when aridity was greater than 0.80(P<0.01),with soil CEC being the strongest driving factor.The importance ranking revealed that the relative importance contribution of soil pH to SMF was greatest when aridity was less than 0.80(66.9%).When aridity was set to greater than 0.80,the relative importance contributions of CEC and EVI to SMF increased(45.1%and 31.9%,respectively).Our findings indicated that SMF had high spatial heterogeneity in drylands of China.The aridity threshold controlled the impact of environmental factors on SMF. 展开更多
关键词 DRYLANDS Soil multifunctionality (SMF) aridity index(AI) Spatial variability Driving factors aridity level
下载PDF
Change in Precipitation and Temperature Amounts over Three Decades in Central Anatolia,Turkey 被引量:1
12
作者 Turkan Bayer Altin Belma Barak Bekir Necati Altin 《Atmospheric and Climate Sciences》 2012年第1期107-125,共19页
The study presents the change in precipitation and temperature of the Central Anatolia region which a semi-arid climate prevails. The climatic data consists of the monthly rainfall totals and temperatures from 33 stat... The study presents the change in precipitation and temperature of the Central Anatolia region which a semi-arid climate prevails. The climatic data consists of the monthly rainfall totals and temperatures from 33 stations in region for the period of 1975-2007. The spatial distribution, the inter-seasonal and the inter-annual amounts of rainfall were studied, along with the vulnerability of Central Anatolia to desertification processes and the place of this semiarid region. Annual temperature frequency has been calculated and shows significant increase in temperature of approximately 2.6% corresponding to 0.4?C. The change in climate was determined according to Erin?’s aridity index. Semi-arid and semi-humid climate types prevailed in ürgüp, Kirikkale, Develi, Kir?ehir and Ak?ehir between 1975 and 1990. However, arid and semi-arid conditions prevailed in these stations after 1990. The decrease of the mean rainfall intensity (MRI) has varied between 0.3% and 21% annually since 1990. Decreases in seasonal rainfall intensity (SRI) and annual rainfall totals are found generally in the south, east and southeast of the region. Increases in SRI and annual rainfall totals are observed in the north and northwest of the region however, these increasing percentages are not as great as the decreasing percentages. Rainfall series have been analyzed for long-term trend according Mann-Kendall test. Results of this test indicate that a decreasing trend of winter and spring rainfall intensity is evident, whereas a generally increasing trend is observed for summer and autumn rainfall intensity. These changes began in the late 1970s and early 1980s across most of Central Anatolia. 展开更多
关键词 Central Anatolia Climate Vulnerability Climatic Change Semi Arid Climate aridity index
下载PDF
Latitudinal patterns of climatic variables and influence of local topography on climatic variables in the dry valleys of southwestern China
13
作者 LI Xiao-juan LIU Xin +1 位作者 ZHANG Han-yue BAO Wei-kai 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1348-1356,共9页
Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography o... Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China. 展开更多
关键词 Latitudinal patterns Wet season Dry season aridity index Local topography
下载PDF
Temporal variations of reference evapotranspiration and controlling factors:Implications for climatic drought in karst areas
14
作者 Xiao-jiao Guo Wen-zhong Wang +5 位作者 Cheng-xi Li Wei Wang Jian-sheng Shi Ying Miao Xing-bo Hao Dao-xian Yuan 《Journal of Groundwater Science and Engineering》 2022年第3期267-284,共18页
Variations in reference evapotranspiration(ET_(0)) and drought characteristics play a key role in the effect of climate change on water cycle and associated ecohydrological patterns.The accurate estimation of ET_(0) i... Variations in reference evapotranspiration(ET_(0)) and drought characteristics play a key role in the effect of climate change on water cycle and associated ecohydrological patterns.The accurate estimation of ET_(0) is still a challenge due to the lack of meteorological data and the heterogeneity of hydrological system.Although there is an increasing trend in extreme drought events with global climate change,the relationship between ET_(0) and aridity index in karst areas has been poorly studied.In this study,we used the Penman-Monteith method based on a long time series of meteorological data from 1951 to 2015 to calculate ET_(0)in a typical karst area,Guilin,Southwest China.The temporal variations in climate variables,ET_(0)and aridity index(AI)were analyzed with the Mann-Kendall trend test and linear regression to determine the climatic characteristics,associated controlling factors of ET_(0) variations,and further to estimate the relationship between ET_(0) and AI.We found that the mean,maximum and minimum temperatures had increased significantly during the 65-year study period,while sunshine duration,wind speed and relative humidity exhibited significant decreasing trends.The annual ET_(0) showed a significant decreasing trend at the rate of−8.02 mm/10a.However,significant increase in air temperature should have contributed to the enhancement of ET_(0),indicating an“evaporation paradox”.In comparison,AI showed a slightly declining trend of−0.0005/a during 1951-2015.The change in sunshine duration was the major factor causing the decrease in ET_(0),followed by wind speed.AI had a higher correlation with precipitation amount,indicating that the variations of AI was more dependent on precipitation,but not substantially dependent on the ET_(0).Although AI was not directly related to ET_(0),ET_(0)had a major contribution to seasonal AI changes.The seasonal variations of ET_(0)played a critical role in dryness/wetness changes to regulate water and energy supply,which can lead to seasonal droughts or water shortages in karst areas.Overall,these findings provide an important reference for the management of agricultural production and water resources,and have an important implication for drought in karst regions of China. 展开更多
关键词 Reference evapotranspiration aridity index Penman-Monteith method Sunshine duration GUILIN
下载PDF
Interdecadal fluctuation of dry and wet climate boundaries in China in the past 50 years 被引量:5
15
作者 Yang Jian-ping Ding Yong-jian +1 位作者 Chen Ren-sheng Liu Lian-you 《Journal of Geographical Sciences》 SCIE CSCD 2002年第2期87-93,共5页
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the cli... Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features. 展开更多
关键词 China the index of aridity dry and wet climate boundary FLUCTUATION
下载PDF
Changes in Aridity in Response to the Global Warming Hiatus 被引量:7
16
作者 Xiaodan GUAN Jianping HUANG Ruixia GUO 《Journal of Meteorological Research》 SCIE CSCD 2017年第1期117-125,共9页
The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in ... The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to dif- ferent performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high lat- itudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated glob- al warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear. 展开更多
关键词 HIATUS aridity index dynamically induced aridity index WETTING
原文传递
1970-2018年全球整体干旱持续增加
17
作者 罗登楠 胡中民 +5 位作者 戴黎聪 侯国龙 底凯 梁敏琪 曹若臣 曾翔 《Journal of Geographical Sciences》 SCIE CSCD 2023年第3期449-463,共15页
Climate change is expected to introduce more water demand in the face of diminishing water supplies,intensifying the degree of aridity observed in terrestrial ecosystems in the 21st century.This study investigated spa... Climate change is expected to introduce more water demand in the face of diminishing water supplies,intensifying the degree of aridity observed in terrestrial ecosystems in the 21st century.This study investigated spatiotemporal variability within global aridity index(AI)values from 1970-2018.The results revealed an overall drying trend(0.0016 yr-1,p<0.01),with humid and semi-humid regions experiencing more significant drying than other regions,including those classified as arid or semi-arid.In addition,the Qinghai-Tibet Plateau has gotten wetter,largely due to the increases in precipitation(PPT)observed in that region.Global drying is driven primarily by decreasing and increasing PPT and potential evapotranspiration(PET),respectively.Decreases in PPT alone or increases in PET also drive global aridification,though to a lesser extent.PPT and increasing potential evapotranspiration(PET),with increasing PET alone or decreasing PPT alone.Slightly less than half of the world’s land area has exhibited a wetting trend,largely owing to increases in regional PPT.In some parts of the world,the combined effects of increased PPT and decreased PET drives wetting,with decreases in PET alone explaining wetting in others.These results indicate that,without consideration of other factors(e.g.,CO_(2)fertilization),aridity may continue to intensify,especially in humid regions. 展开更多
关键词 aridity index climate change arid area drying trend
原文传递
Rare earth element geochemistry in soils along arid and semiarid grasslands in northern China
18
作者 Yi‑Wen Cao Xiao‑Ming Liu +2 位作者 Chao Wang Edith Bai Nanping Wu 《Ecological Processes》 SCIE EI 2022年第1期386-399,共14页
Background:Rare earth elements(REE)are a group of trace elements that behave geochemically coherently.REE fractionation patterns normalized to reference materials provide a powerful tool for documenting pedogenesis.In... Background:Rare earth elements(REE)are a group of trace elements that behave geochemically coherently.REE fractionation patterns normalized to reference materials provide a powerful tool for documenting pedogenesis.Insoil processes are particularly difficult to illustrate with respect to contemporary and past climate conditions.In this study,we characterize the rare earth element(REE)contents in bulk soils and respective geochemical fractions(e.g.,exchangeable,carbonate‑bound,reducible,and oxidizable fractions)and to decipher the relationships between REE geochemistry components and climatic factors across a large‑scale northern China transect(NCT).Results:Across the NCT,bulk REE concentrations ranged from 55.2 to 241.1μg g^(−1)with a main portion in the residual fraction(49–79%),followed by oxidizable fraction(2–40%),reducible fraction(3–22%),carbonate‑bound fraction(0.1–16%),and negligible exchangeable fraction.The REE contents of geochemical components(carbonate‑bound,reducible,and oxidizable)in topsoils correlated to climate factors(mean annual precipitation,mean annual temperature,potential evaporation,and aridity index(AI)).The normalized abundances to the upper continental crust(UCC)composition show that the middle REE was generally enriched than the light REE and heavy REE in topsoils along the transect.The overall UCC‑normalized bulk REE patterns in topsoils and subsoils were similar,characterized by weak negative Ce anomalies and positive Eu anomalies.Conclusions:Our data in topsoils and depth profiles collectively suggest that cycling of REE was primarily regulated by abiotic processes in area with AI<0.2,while the biological effect on REE circulation in soil played a more effective role in area with AI>0.3.The similar UCC normalized patterns in topsoils suggest that the REE was originated from a common source with limited influences from other sources(e.g.,atmospheric dusts and anthropogenic contribu‑tions).Our results to some extent provide evidence for climatic influence REE distribution patterns both in topsoils and subsoils across the continental‑scale transect.Our investigation gives insights into future studies on vertical REE mobility and its associated biogeochemical pathways. 展开更多
关键词 Rare earth elements Soil GRASSLAND Northern China aridity index
原文传递
THE FLUCTUATIONS OF DRY AND WET CLIMATE BOUNDARY AND ITS CAUSAL ANALYSES IN CHINA 被引量:2
19
作者 杨建平 丁永建 +1 位作者 陈仁升 刘连友 《Acta meteorologica Sinica》 SCIE 2004年第2期211-226,共16页
Based on yearly precipitation and Φ20 evaporation pan data during 1951 to 1999 of 295 stations,the aridity index is calculated in this paper.According to the aridity index,the climatic regions in China are divided in... Based on yearly precipitation and Φ20 evaporation pan data during 1951 to 1999 of 295 stations,the aridity index is calculated in this paper.According to the aridity index,the climatic regions in China are divided into three types:the arid zone,the semi-arid zone and the humid zone. Isoline 0.20 is the boundary between arid and semi-arid zones.Isoline 0.50 is the boundary between semi-arid and humid zones.The fluctuations of dry and wet climate boundaries are very substantial,have greatly regional difference,and have the features of the whole shifting along the same direction and of the opposite moving along the contrary direction over the past 50 years.The semi-arid zone is a transitional zone between humid and arid zones,a border belt of monsoon,and a susceptible zone of environmental evolution in China. In the period of the late 1960s to the early 1970s,remarkable change had occurred for dry and wet climate in China.It manifests significantly that climate is from wetter into drought in most regions of northern China.Moreover,drought has an increasing trend.The fluctuations of climatic boundaries and the dry and wet variations in climate have substantial inter-decadal features. The main factors affecting the dry and wet climate boundary fluctuations and the dry and wet variations of climate in China are East Asian summer monsoon,Indian Monsoon,plateau monsoon in the Tibetan Plateau,westerly circulation,and West Pacific subtropical high.The different types of circulations and the strong and weak combinations of these circulations result in the regional differences of dry and wet climate changes in China.Inter-decadal variations of the dry and wet climate boundary fluctuations and of the arid and humid climate result from the inter-decadal changes of East Asian summer monsoon,Indian Monsoon,plateau monsoon,westerly circulation, and West Pacific subtropical high.The anomalous general atmospheric circulation in the Northern Hemisphere during the late 1960s to the early 1970s is the causes of arid and humid climate remarkable change in China. 展开更多
关键词 index of aridity dry and wet climate boundary fluctuation causal analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部