期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
MobSafe:Cloud Computing Based Forensic Analysis for Massive Mobile Applications Using Data Mining 被引量:2
1
作者 Jianlin Xu Yifan Yu +4 位作者 Zhen Chen Bin Cao Wenyu Dong Yu Guo Junwei Cao 《Tsinghua Science and Technology》 SCIE EI CAS 2013年第4期418-427,共10页
With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Int... With the explosive increase in mobile apps, more and more threats migrate from traditional PC client to mobile device. Compared with traditional Win+Intel alliance in PC, Android+ARM alliance dominates in Mobile Internet, the apps replace the PC client software as the major target of malicious usage. In this paper, to improve the security status of current mobile apps, we propose a methodology to evaluate mobile apps based on cloud computing platform and data mining. We also present a prototype system named MobSafe to identify the mobile app's virulence or benignancy. Compared with traditional method, such as permission pattern based method, MobSafe combines the dynamic and static analysis methods to comprehensively evaluate an Android app. In the implementation, we adopt Android Security Evaluation Framework (ASEF) and Static Android Analysis Framework (SAAF), the two representative dynamic and static analysis methods, to evaluate the Android apps and estimate the total time needed to evaluate all the apps stored in one mobile app market. Based on the real trace from a commercial mobile app market called AppChina, we can collect the statistics of the number of active Android apps, the average number apps installed in one Android device, and the expanding ratio of mobile apps. As mobile app market serves as the main line of defence against mobile malwares, our evaluation results show that it is practical to use cloud computing platform and data mining to verify all stored apps routinely to filter out malware apps from mobile app markets. As the future work, MobSafe can extensively use machine learning to conduct automotive forensic analysis of mobile apps based on the generated multifaceted data in this stage. 展开更多
关键词 Android platform mobile malware detection cloud computing forensic analysis machine learning redis key-value store big data hadoop distributed file system data mining
原文传递
基于深度学习的Linux系统DKOM攻击检测 被引量:1
2
作者 陈亮 孙聪 《计算机科学》 CSCD 北大核心 2024年第9期383-392,共10页
直接内核对象操纵(DKOM)攻击通过直接访问和修改内核对象来隐藏内核对象,是主流操作系统长期存在的关键安全问题。对DKOM攻击进行基于行为的在线扫描适用的恶意程序类型有限且检测过程本身易受DKOM攻击影响。近年来,针对潜在受DKOM攻击... 直接内核对象操纵(DKOM)攻击通过直接访问和修改内核对象来隐藏内核对象,是主流操作系统长期存在的关键安全问题。对DKOM攻击进行基于行为的在线扫描适用的恶意程序类型有限且检测过程本身易受DKOM攻击影响。近年来,针对潜在受DKOM攻击的系统进行基于内存取证的静态分析成为一种有效和安全的检测方法。现有方法已能够针对Windows内核对象采用图神经网络模型进行内核对象识别,但不适用于Linux系统内核对象,且对于缺少指针字段的小内核对象的识别有效性有限。针对以上问题,设计并实现了一种基于深度学习的Linux系统DKOM攻击检测方案。首先提出了一种扩展内存图结构刻画内核对象的指针指向关系和常量字段特征,利用关系图卷积网络对扩展内存图的拓扑结构进行学习以实现内存图节点分类,使用基于投票的对象推测算法得出内核对象地址,并通过与现有分析框架Volatility的识别结果对比实现对Linux系统DKOM攻击的检测。提出的扩展内存图结构相比现有的内存图结构能更好地表示缺乏指针但具有常量字段的小内核数据结构的特征,实现更高的内核对象检测有效性。与现有基于行为的在线扫描工具chkrootkit相比,针对5种现实世界Rootkit的DKOM行为,所提方案实现了更高的检测有效性,精确度提高20.1%,召回率提高32.4%。 展开更多
关键词 内存取证 恶意软件检测 操作系统安全 图神经网络 二进制分析
下载PDF
Rootkit研究综述 被引量:11
3
作者 张瑜 刘庆中 +2 位作者 李涛 罗自强 吴丽华 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第4期563-578,共16页
Rootkit是一种持久且难以察觉地存在于网络系统中的恶意代码,通过修改操作系统内核或更改指令执行路径,为攻击者提供隐匿自身、维持访问和软件窃听功能,已造成了严重的网络安全威胁。该文首先介绍了Rootkit的基本定义与演化过程,其次剖... Rootkit是一种持久且难以察觉地存在于网络系统中的恶意代码,通过修改操作系统内核或更改指令执行路径,为攻击者提供隐匿自身、维持访问和软件窃听功能,已造成了严重的网络安全威胁。该文首先介绍了Rootkit的基本定义与演化过程,其次剖析了Windows系统中与Rootkit密切相关的内核组件和Rootkit的工作机制;然后讨论了Rootkit防御机制与检测方法;最后探讨了Rootkit的发展趋势和Rootkit防御的进一步研究方向。 展开更多
关键词 隐遁攻击 取证分析 恶意代码 网络安全 ROOTKIT
下载PDF
Andriod相册类恶意软件取证分析
4
作者 张俊 李明明 《计算机科学》 CSCD 北大核心 2016年第B12期61-68,共8页
近几年针对Android系统的恶意软件广泛传播,其成为涉及电信网络案件中需要调查取证的关键证据。将Andriod相册类恶意软件欺骗用户安装,收集个人隐私,拦截手机短信,给用户自身和手机系统带来很大危害。从数字取证的角度出发,提出一... 近几年针对Android系统的恶意软件广泛传播,其成为涉及电信网络案件中需要调查取证的关键证据。将Andriod相册类恶意软件欺骗用户安装,收集个人隐私,拦截手机短信,给用户自身和手机系统带来很大危害。从数字取证的角度出发,提出一种调查分析Android恶意软件的方法,通过模拟安装、软件解包、反编译、关键代码分析等步骤,证明其功能与行为的关联性,为打击恶意软件犯罪提供坚实证据。将该方法应用于一个典型的Andriod相册类恶意软件,证明了其有效性。 展开更多
关键词 ANDROID 恶意软件 取证分析
下载PDF
逆向分析技术在电子数据司法鉴定中的应用
5
作者 沙晶 钱伟 蔡立明 《电信科学》 北大核心 2010年第S2期61-65,共5页
电子数据司法鉴定需要确定破坏性程序(如木马)的行为、窃取信息的发送方向、传播机理。而软件逆向分析通过对目标程序"反编译"或"反汇编"的方法,分析目标程序的功能、结构、处理流程。本文介绍了软件逆向分析的基... 电子数据司法鉴定需要确定破坏性程序(如木马)的行为、窃取信息的发送方向、传播机理。而软件逆向分析通过对目标程序"反编译"或"反汇编"的方法,分析目标程序的功能、结构、处理流程。本文介绍了软件逆向分析的基本概念和常用工具以及软件逆向分析的基本方法,并用实例讲述了软件逆向分析在电子数据司法鉴定中的应用。 展开更多
关键词 电子数据司法鉴定 软件逆向分析 破坏性程序行为分析
下载PDF
Using deep learning to solve computer security challenges:a survey 被引量:1
6
作者 Yoon-Ho Choi Peng Liu +5 位作者 Zitong Shang Haizhou Wang Zhilong Wang Lan Zhang Junwei Zhou Qingtian Zou 《Cybersecurity》 CSCD 2020年第1期203-234,共32页
Although using machine learning techniques to solve computer security challenges is not a new idea,the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer... Although using machine learning techniques to solve computer security challenges is not a new idea,the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer security community.This paper seeks to provide a dedicated review of the very recent research works on using Deep Learning techniques to solve computer security challenges.In particular,the review covers eight computer security problems being solved by applications of Deep Learning:security-oriented program analysis,defending return-oriented programming(ROP)attacks,achieving control-flow integrity(CFI),defending network attacks,malware classification,system-event-based anomaly detection,memory forensics,and fuzzing for software security. 展开更多
关键词 Deep learning Security-oriented program analysis Return-oriented programming attacks Control-flow integrity Network attacks malware classification System-event-based anomaly detection Memory forensics Fuzzing for software security
原文传递
Using deep learning to solve computer security challenges:a survey
7
作者 Yoon-Ho Choi Peng Liu +5 位作者 Zitong Shang Haizhou Wang Zhilong Wang Lan Zhang Junwei Zhou Qingtian Zou 《Cybersecurity》 2018年第1期815-846,共32页
Although using machine learning techniques to solve computer security challenges is not a new idea,the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer... Although using machine learning techniques to solve computer security challenges is not a new idea,the rapidly emerging Deep Learning technology has recently triggered a substantial amount of interests in the computer security community.This paper seeks to provide a dedicated review of the very recent research works on using Deep Learning techniques to solve computer security challenges.In particular,the review covers eight computer security problems being solved by applications of Deep Learning:security-oriented program analysis,defending return-oriented programming(ROP)attacks,achieving control-flow integrity(CFI),defending network attacks,malware classification,system-event-based anomaly detection,memory forensics,and fuzzing for software security. 展开更多
关键词 Deep learning Security-oriented program analysis Return-oriented programming attacks Control-flow integrity Network attacks malware classification System-event-based anomaly detection Memory forensics Fuzzing for software security
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部