For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that N...For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that NR is quasi-Armendariz if and only if Mm(N)Mm(R) is quasi-Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz, where Mm(N) and Tm(N) denote the m×m full matrix and the m×m upper triangular matrix over N, respectively. NR is quasi-Armendariz if and only if N[x]R[x] is quasi-Armendariz. It is shown that every quasi-Baer module is quasi-Armendariz module.展开更多
A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we...A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No.10571026)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20060286006) Science Foundation for Youth Scholars of Northwest Normal University (Grant No.NWNU-LKQN-08-1)
文摘For a right R-module N, we introduce the quasi-Armendariz modules which are a common generalization of the Armendariz modules and the quasi-Armendariz rings, and investigate their properties. Moreover, we prove that NR is quasi-Armendariz if and only if Mm(N)Mm(R) is quasi-Armendariz if and only if Tm(N)Tm(R) is quasi-Armendariz, where Mm(N) and Tm(N) denote the m×m full matrix and the m×m upper triangular matrix over N, respectively. NR is quasi-Armendariz if and only if N[x]R[x] is quasi-Armendariz. It is shown that every quasi-Baer module is quasi-Armendariz module.
基金The NNSF (10571026) of Chinathe Specialized Research Fund (20060286006) for the Doctoral Program of Higher Education.
文摘A ring R is called right zip provided that if the annihilator τR(X) of a subset X of R is zero, then τR(Y) = 0 for some finite subset Y C X. Such rings have been studied in literature. For a right R-module M, we introduce the notion of a zip module, which is a generalization of the right zip ring. A number of properties of this sort of modules are established, and the equivalent conditions of the right zip ring R are given. Moreover, the zip properties of matrices and polynomials over a module M are studied.