旨在分析陶厄氏菌属(Genus Thuaera)中的一株菌株Thauera sp.K11对含酚废水中酚类化合物的降解作用和途径。以石化污水厂分离菌株K11为研究对象,克隆其16S r RNA基因和关键酶基因,并进行系统发育分析,在基因水平探究苯酚降解机理;利用...旨在分析陶厄氏菌属(Genus Thuaera)中的一株菌株Thauera sp.K11对含酚废水中酚类化合物的降解作用和途径。以石化污水厂分离菌株K11为研究对象,克隆其16S r RNA基因和关键酶基因,并进行系统发育分析,在基因水平探究苯酚降解机理;利用气相色谱技术检测酚类化合物降解效果和苯酚降解机理。结果显示,利用16S r RNA系统学分析发现K11是陶厄氏菌属的一株细菌。该菌对11种酚类化合物具有降解作用,其中5种酚类化合物72 h的降解率>90%。克隆并获得了K11的苯酚羟化酶和邻苯二酚双加氧酶基因。酶活性测定表明,K11通过苯酚羟化酶催化苯酚转化为邻苯二酚,然后利用邻苯二酚-2,3-双加氧酶催化产生2-HMSA。陶厄氏菌Thauera sp.K11是一株能够降解多种酚类化合物的菌株,具有较强的酚类污染物降解能力,其通过苯酚→邻苯二酚→2-HMSA途径进行苯酚降解。展开更多
Bacterial-feeding nematodes can promote the bacterial activity through feeding.Bacterial abundance and their activity affect the degradation of polycyclic aromatic hydrocarbons(PAH) such as phenanthrene.The effects of...Bacterial-feeding nematodes can promote the bacterial activity through feeding.Bacterial abundance and their activity affect the degradation of polycyclic aromatic hydrocarbons(PAH) such as phenanthrene.The effects of bacterial-feeding nematodes,bacteria,and their interactions on the degradation of phenanthrene with or without glucose were studied through a microcosm experiment.The results showed that up to 57.0%of phenanthrene in mineral medium contaminated with phenanthrene was degraded in the control with bacteria alone and bacteria with the presence of nematodes and/or glucose increased the degradation of phenanthrene by 25.6%to 36.6%.Although both nematode and bacteria abundance decreased gradually,catechol 2,3-dioxygenase(C230) activity increased during the incubation period.Compared with bacteria alone,the presence of nematodes significantly increased C230 activity as well as the abundance of bacteria;this effect was more pronounced when glucose was present.The results imply that nematodes might promote the removal of phenanthrene from medium by stimulating bacteria and C230 activities.展开更多
文摘旨在分析陶厄氏菌属(Genus Thuaera)中的一株菌株Thauera sp.K11对含酚废水中酚类化合物的降解作用和途径。以石化污水厂分离菌株K11为研究对象,克隆其16S r RNA基因和关键酶基因,并进行系统发育分析,在基因水平探究苯酚降解机理;利用气相色谱技术检测酚类化合物降解效果和苯酚降解机理。结果显示,利用16S r RNA系统学分析发现K11是陶厄氏菌属的一株细菌。该菌对11种酚类化合物具有降解作用,其中5种酚类化合物72 h的降解率>90%。克隆并获得了K11的苯酚羟化酶和邻苯二酚双加氧酶基因。酶活性测定表明,K11通过苯酚羟化酶催化苯酚转化为邻苯二酚,然后利用邻苯二酚-2,3-双加氧酶催化产生2-HMSA。陶厄氏菌Thauera sp.K11是一株能够降解多种酚类化合物的菌株,具有较强的酚类污染物降解能力,其通过苯酚→邻苯二酚→2-HMSA途径进行苯酚降解。
基金supported by the Shandong Academy of Agricultural Sciences Youth Fund,China(No.2014QNM49)the National Key Technology R&D Program during the 12th Five-Year Plan Period (No.2012BAD15B02)+1 种基金the Program of Taishan Scholars for Overseas Experts,Chinathe Key Project of Science and Technology Innovation of Shandong Academy of Agricultural Sciences,China(No.2014CXZ01)
文摘Bacterial-feeding nematodes can promote the bacterial activity through feeding.Bacterial abundance and their activity affect the degradation of polycyclic aromatic hydrocarbons(PAH) such as phenanthrene.The effects of bacterial-feeding nematodes,bacteria,and their interactions on the degradation of phenanthrene with or without glucose were studied through a microcosm experiment.The results showed that up to 57.0%of phenanthrene in mineral medium contaminated with phenanthrene was degraded in the control with bacteria alone and bacteria with the presence of nematodes and/or glucose increased the degradation of phenanthrene by 25.6%to 36.6%.Although both nematode and bacteria abundance decreased gradually,catechol 2,3-dioxygenase(C230) activity increased during the incubation period.Compared with bacteria alone,the presence of nematodes significantly increased C230 activity as well as the abundance of bacteria;this effect was more pronounced when glucose was present.The results imply that nematodes might promote the removal of phenanthrene from medium by stimulating bacteria and C230 activities.