期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Adaptive Maxwell’s Equations Derived Optimization and Its Application in Antenna Array Synthesis 被引量:1
1
作者 Donglin Su Lilin Li +1 位作者 Shunchuan Yang Fei Wang 《China Communications》 SCIE CSCD 2021年第5期263-272,共10页
In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MED... In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis. 展开更多
关键词 electromagnetic compatibility Maxwell’s equations derived optimization adaptive Maxwell’s equations derived optimization sequential modelbased optimization antenna array synthesis
下载PDF
New Antenna Array Beamforming Techniques Based on Hybrid Convolution/Genetic Algorithm for 5G and Beyond Communications
2
作者 Shimaa M.Amer Ashraf A.M.Khalaf +3 位作者 Amr H.Hussein Salman A.Alqahtani Mostafa H.Dahshan Hossam M.Kassem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2749-2767,共19页
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t... Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL. 展开更多
关键词 array synthesis convolution process genetic algorithm(GA) half power beamwidth(HPBW) linear antenna array(LAA) side lobe level(SLL) quality of service(QOS)
下载PDF
The FAST Core Array
3
作者 Peng Jiang Rurong Chen +8 位作者 Hengqian Gan Jinghai Sun Boqin Zhu Hui Li Weiwei Zhu Jingwen Wu Xuelei Chen Haiyan Zhang Tao An 《Astronomical Techniques and Instruments》 CSCD 2024年第2期84-94,共11页
The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will c... The Five-hundred-meter Aperture Spherical Radio Telescope(FAST)Core Array is a proposed extension of FAST,integrating 24 secondary 40-m antennas implanted within 5 km of the FAST site.This original array design will combine the unprecedented sensitivity of FAST with a high angular resolution(4.3"at a frequency of 1.4 GHz),thereby exceeding the capabilities at similar frequencies of next-generation arrays such as the Square Kilometre Array Phase 1 or the next-generation Very Large Array.This article presents the technical specifications of the FAST Core Array,evaluates its potential relatively to existing radio telescope arrays,and describes its expected scientific prospects.The proposed array will be equipped with technologically advanced backend devices,such as real-time signal processing systems.A phased array feed receiver will be mounted on FAST to improve the survey efficiency of the FAST Core Array,whose broad frequency coverage and large field of view(FOV)will be essential to study transient cosmic phenomena such as fast radio bursts and gravitational wave events,to conduct surveys and resolve structures in neutral hydrogen galaxies,to monitor or detect pulsars,and to investigate exoplanetary systems.Finally,the FAST Core Array can strengthen China's major role in the global radio astronomy community,owing to a wide range of potential scientific applications from cosmology to exoplanet science. 展开更多
关键词 FAST Radio telescope INTERFEROMETRY synthesis array
下载PDF
Zigzag emitting array synthesis aperture acoustical holography
4
作者 XIA Xianhua and ZHANG Dejun(Wuhan Institute of Physics, Academia Sinica, Wuhan, 430071 ) 《Chinese Journal of Acoustics》 1992年第1期76-83,共8页
Zigzag Emitting Array Synthesis Aperture ( ZEASA ), a new model of the acoustical imaging is presented and discussed in the paper. The imaging system of this model has not only enough emitting energy for underwater ac... Zigzag Emitting Array Synthesis Aperture ( ZEASA ), a new model of the acoustical imaging is presented and discussed in the paper. The imaging system of this model has not only enough emitting energy for underwater acoustical imaging but also a large field of view. Its scanning speed is high and its cost is relatively low. The form of the point spread function of the system is given. It is found that if the system parameters are controlled properly, the major lobe of the point spread function is similar to that of the system with a square receiving array, and the side lobes along the axis direction of the linear receiving array are lowered. An imaging system with a 64-element. linear receiving array and a 64-element zigzag emitting array is simulated and the analysis of ZEASA is proved to be correct by the results of the simulation. 展开更多
关键词 Zigzag emitting array synthesis aperture acoustical holography
原文传递
Shaped beam pattern synthesis with desired nulling level and minimum sidelobe level
5
作者 Li-Ming Xu Qiang-Jian Song +3 位作者 Shi-Wen Lei Bo Chen Jing Tian Hao-Quan Hu 《Journal of Electronic Science and Technology》 CAS CSCD 2023年第1期35-45,共11页
For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-... For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-beam pattern synthesis(SBPS)is the most commonly used approach.However,since the SBPS problem focuses on synthesizing a predetermined beam shape,the minimum SLL via this approach cannot ensure to obtain the maximum power gain.Conversely,it cannot obtain the lowest SLL with a certain power gain requirement.Based on such consideration,this paper tries to further minimize SLL of a wide-beam pattern with a desired low NL nulling region,by solving the power gain pattern synthesis(PGPS)problem.The PGPS problem selects the array excitation by directly optimizing the power gain.Hence,it has the potential to reduce SLL,when achieving the equal mainlobe power gain constraint via SBPS.An iterative algorithm which converts the primal optimization problem into convex sub-problems is proposed,resulting in an effective problem-solving scheme.Numerical simulations demonstrate the proposed algorithm can obtain about 10-dB lower SLL than the existing algorithms. 展开更多
关键词 array synthesis Minimum sidelobe level(SLL) Nulling level(NL) Pattern synthesis Wide-beam
下载PDF
Beam Pattern Synthesis Based on Hybrid Optimization Algorithm
6
作者 郁彦利 王英民 李磊 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第3期171-176,共6页
As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle ... As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found. 展开更多
关键词 information processing array beam pattern synthesis genetic algorithm OPTIMIZATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部