Arsanilic acid (ASA), copper ion (Cuz +) and phosphate (PO43 ) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine Anaerobic 2+ digesti...Arsanilic acid (ASA), copper ion (Cuz +) and phosphate (PO43 ) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine Anaerobic 2+ digestion is often used for the management of pig manure. However the interaction ofASA with Cu 3 ' 2+ 3 or P04 on anaerobic &gestlon is still not clear. In thin study, the influence ofASA, Cu , PO4- and their interaction on anaerobic digestion of pig manure and the possible mechanisms were investigated. The initial concentrations ofASA, Cu2+ and PO43 were 0.46 mM, 2 mM and 2 mM in the anaerobic digester, respectively. The methanogenesis was severely inhibited in the assays with only ASA addition, only Cu2+ addition and ASA + PO43 addition with the inhibition index of 97.8%, 46.6% 2+ and 82.6%, respectively, but the methanogenesis inhibition in the assay with ASA + Cu addlt on was mitigated with the inhibition index of 39.4%. PO43 had no obvious impacts on the degradation of ASA. However, Cu2+ addition inhibited the degradation of ASA, and mitigated the methanogcnesis inhibition. The existence of ASA would inhibit methanogenesis and generate more toxic inorganic arsenic compounds during anaerobic digestion, implying the limitation of anaerobic digestion for ASA- contaminated animal manure. However, the co-existence of ASA and Cu2+ could mitigate the inhibition. These results could provide useful information for the management of anaerobic digestion of pig manure containing ASA and Cu2+ .展开更多
文摘Arsanilic acid (ASA), copper ion (Cuz +) and phosphate (PO43 ) are widely used as feed additives for pigs. Most of these three supplemented feed additives were excreted in feces and urine Anaerobic 2+ digestion is often used for the management of pig manure. However the interaction ofASA with Cu 3 ' 2+ 3 or P04 on anaerobic &gestlon is still not clear. In thin study, the influence ofASA, Cu , PO4- and their interaction on anaerobic digestion of pig manure and the possible mechanisms were investigated. The initial concentrations ofASA, Cu2+ and PO43 were 0.46 mM, 2 mM and 2 mM in the anaerobic digester, respectively. The methanogenesis was severely inhibited in the assays with only ASA addition, only Cu2+ addition and ASA + PO43 addition with the inhibition index of 97.8%, 46.6% 2+ and 82.6%, respectively, but the methanogenesis inhibition in the assay with ASA + Cu addlt on was mitigated with the inhibition index of 39.4%. PO43 had no obvious impacts on the degradation of ASA. However, Cu2+ addition inhibited the degradation of ASA, and mitigated the methanogcnesis inhibition. The existence of ASA would inhibit methanogenesis and generate more toxic inorganic arsenic compounds during anaerobic digestion, implying the limitation of anaerobic digestion for ASA- contaminated animal manure. However, the co-existence of ASA and Cu2+ could mitigate the inhibition. These results could provide useful information for the management of anaerobic digestion of pig manure containing ASA and Cu2+ .