Individuals with Glucose-6-phosphate dehydrogenase (G6PD) deficiency are susceptible to hemolytic anemia when exposed to pro-oxidant substances. This study investigates the hemolytic impact of Artemisia annua (A. annu...Individuals with Glucose-6-phosphate dehydrogenase (G6PD) deficiency are susceptible to hemolytic anemia when exposed to pro-oxidant substances. This study investigates the hemolytic impact of Artemisia annua (A. annua) extracts in G6PD-deficient subjects through a mixed experimental approach. In the in vitro phase, red blood cells from G6PD-deficient individuals and rats induced with Dehydroepiandrosterone (DHEA) were exposed to various concentrations of A. annua infusion, with distilled water and physiological saline as positive and negative controls respectively. The in vivo study involved G6PD-deficient Wistar rats divided into three groups receiving A. annua infusion, quinine (positive control), and distilled water (negative control) via gavage. Blood samples were collected for biochemical and hematological analyses. Notably, at a 40% concentration of A. annua infusion, there was a significant increase in the hemolysis rate of G6PD-deficient red blood cells compared to controls (p A. annua exhibited elevated aspartate aminotransferase (129.25 ± 4.55 U/L vs. 80.09 ± 4.03 U/L;p A. annua infusion tested positive for saponins. These findings underscore the risk of hemolysis in G6PD-deficient individuals upon ingesting A. annua.展开更多
[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus...[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus establish a systematic model of bacteria-fungus-plant.[Methods]Fifty-eight strains of bacteria and one strain of pathogenic fungi,Globisporangium ultimatum,were used for the experiments.These 58 bacterial strains were assembled into a bacterial community,and the bacteria with abundance in the top 1%were reassembled into a dominant bacterial community as measured by 16S rDNA.[Results]The growth of A.annua seedlings inoculated with bacterial communities and pathogenic fungi or dominant bacterial communities and pathogenic fungi was significantly better than that of A.annua seedlings inoculated with pathogenic fungi during in vitro confrontation,which was evident in both enzymatic and non-enzymatic antioxidant assays.[Conclusions]The results suggest that the dominant bacterial community has a crucial role as a representative core microbial community of synthetic bacterial community,which can protect plants by interfering with the growth of phytopathogenic fungi mediated by chemical signals,and can be used as the main synthetic community of biocides to achieve the effect of biocontrol.展开更多
The artemisinin accumulation in the hairy root cultures of Artemisia annua L. was enhanced via a treatment of three fungal elicitors separately ( Verticillium dahliae Kleb., Rhizopus stolonifer (Ehrenb. ex ...The artemisinin accumulation in the hairy root cultures of Artemisia annua L. was enhanced via a treatment of three fungal elicitors separately ( Verticillium dahliae Kleb., Rhizopus stolonifer (Ehrenb. ex Fr.) Vuill and Colletotrichum dematium (Pers.) Grove). Among these three elicitors, V. dahliae had the highest inducing efficiency, but none of them manifests any noticeable effects on the cell growth of the hairy root cultures. The artemisinin content of the hairy root cultures treated with V. dahliae elicitor was 1.12 mg/g DW, which was 45% higher than the control (0.77 mg/g DW). The results showed that elicitation was dependent on the elicitor concentration, the incubation period and the physiological stage at which the hairy root cultures were treated. In addition, the authors found that for V. dahliae , the optimum concentration was 0.4 mg carbohydrate per millilitre medium, the strongest response of A. annua hairy root cultures to the elicitation was at the late exponential growth stage, and the highest artemisinin content of the hairy root cultures was on the 4th day post treatment.展开更多
The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (la...The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.展开更多
A 1 539 by squalene synthase (AaSQS) cDNA was cloned from a high-yield Artemisia annua L. strain 001 by reverse transcription-polymerise chain reaction (RT-PCR). The amino acid sequence of AaSQS is 70%, 77%, 44% and 3...A 1 539 by squalene synthase (AaSQS) cDNA was cloned from a high-yield Artemisia annua L. strain 001 by reverse transcription-polymerise chain reaction (RT-PCR). The amino acid sequence of AaSQS is 70%, 77%, 44% and 39%a identical to that of squalene synthases from Arabidopsis thaliana, tobacco, human and yeast, respectively. The AaSQS genomic DNA has a complex organization containing 14 exons and 13 introns. Full-length or C-terminal truncated cDNA was subcloned into prokaryotic expression vector pET30a and the constructed plasmid was introduced to Escherichia coli strain BL21 (DE3) for induced overexpression. No squalene synthase protein with expected molecular mass was observed in E. cola containing the putative full-length squalene synthase cDNA, however, overexpression in E. coli was achieved by truncating 30 amino acids of hydrophobic region at the carboxy terminus.展开更多
A 1 886 bp full-length sesquiterpene synthase (AaSES) cDNA was cloned front a high-yield Artemisia annua L. strain 001 by a rapid amplification of cDNA end (RACE) strategy. AaSES is 59% identical to Artemisia cyclase ...A 1 886 bp full-length sesquiterpene synthase (AaSES) cDNA was cloned front a high-yield Artemisia annua L. strain 001 by a rapid amplification of cDNA end (RACE) strategy. AaSES is 59% identical to Artemisia cyclase cDNA clone cASC125, 50% identical to epi-cedrol synthase from A. annua , 48% identical to amorpha-4, 11-diene synthase from A. annua, 39% identical to the 5-epi-aristolechene synthase from tabacco, 38 % identical to vetispiradiene synthase front H. muticus, 41 % identical to the, delta-cadinene synthase from cotton. The coding region of the cDNA was inserted into a procaryotic expression vector pET-30a and overexpressed in E. coli BL21 ( DE3). The cyclase proteins extracted front bacterial culture were found largely in an insoluble protein fraction. AaSES expresses in leaves, stems a-rid flowers, not in roots as indicated by Northern blotting analysis.展开更多
The aim of this study was to determine the best extraction technique, the most suitable solvent, the optimal plant parts, and the acaricidal activities of Artemisia annua L. The petroleum ether (30-60℃), petroleum ...The aim of this study was to determine the best extraction technique, the most suitable solvent, the optimal plant parts, and the acaricidal activities of Artemisia annua L. The petroleum ether (30-60℃), petroleum ether (60-90℃), ethanol, acetone, and water parallel and sequenced extracts were obtained from the leaves, stems and roots of different period of A. annua L. in April, May, June, July and September respectively. And then the acaricidal bioactivities against Tetranychus cinnabarinus of all extracts were determined by the slide-capillary method in the laboratory. The results indicated that the acaricidal bioactivities elevated as the development of A. annua plant at the concentration of 5 mg mL-L The general tendency exhibited the sequence of July 〉 June 〉 May 〉 April, but September decreased comparing to July. However, the most effective extracts in five months were all acetone parallel extract of A. annua leaf, and the corrected mortalities treated after 48 h ranged from 74 to 100%. The median lethal concentrations (LC50) against T. cinnabarinus of acetone parallel extracts ofA. annua leaves in September, July, June, May and April were 0.5986, 0.4341, 0.8376, 0.9443 and 1.3817 mg mL^-1, respectively, treated after 48 h. The 13 groups were isolated from acetone extracts ofA. annua leaves in July by column chromatography, both the 1 lth and 12th groups exhibited strong bioactivities. The median lethal concentrations of the 1 lth and 12th groups against T. cinnabarinus were 0.3683 and 0.1586 mg mL^-1, respectively. The acetone parallel extract ofA. annua leaf in July was the most toxic to T. cinnabarinus and the corrected mortality was 100% after 48 h. The acetone parallel extract of the 1 lth and 12th groupswere the most active components, acted as the emphases in further study.展开更多
Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin i...Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.展开更多
To enhance the understanding of artemisinin biosynthesis, we have successfully bred self-pollination Artemisia annua plants. Here, we report efficient somatic embryogenesis and organogenesis of self-pollination plants...To enhance the understanding of artemisinin biosynthesis, we have successfully bred self-pollination Artemisia annua plants. Here, we report efficient somatic embryogenesis and organogenesis of self-pollination plants and artemisinin formation in regenerated plants. The first through sixth nodal leaves of seedlings are used as explants. On agar-solidified MS basal medium supplemented with TDZ (0.6 mg/l) and IBA (0.1 mg/l), all explants after inoculation of less than 3 weeks start to form embryogenic calli, which further produce globular, torpedo, heart and early cotyledon embryos. In all six positional leaves, explants from the sixth leaf show the rapidest responses to induction of embryogenic calli and somatic embryos. On this medium, somatic embryos continuously develop into adventitious buds, which can form adventitious roots on a rooting medium containing NAA (0.5 mg/l). Meanwhile, on agar-solidified MS basal medium supplemented with BAP (1 mg/l) and NAA (0.05 mg/l), approximately 100% of explants from leaves #3-6 form calli in less than 3 weeks of inoculation and adventitious buds via organogenesis in 3-4 weeks. In all six positional leaves, explants from the sixth leaf exhibit the rapidest response to induction of calli and adventitious buds. Nearly 100% adventitious buds can form adventitious roots on the rooting medium. Regenerated plants from both somatic embryogenesis and organogenesis complete self-pollination to produce seeds in 80-90 days of growth in growth chamber. LC-ESI-MS analysis demonstrates that regenerated plants biosynthesize artemisinin. These results show the highly efficient regeneration capacity of self-pollination A. annua plants that can form a new platform to enhance the understanding of artemisinin biosynthesis and metabolic engineering.展开更多
The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fun...The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fungi were determined to characterize the metabolic function of endophytic fungi. The results showed that a total of 67 endophytic fungi were obtained from Artemisia annua tissues. The number and species of endophytic fungi in different tissues were significantly different. The number, colonization rate (CR) and isolation rate (IR) of endophytic fungi in root were significantly higher than those of stem and leaf. The dominant endophytic fungi, diversity and similarity coefficient of endophytic fungi also showed significant difference among tissues. The extracellular enzyme activities of endophytic fungi in different tissues are significantly different. The enzyme activities of endophytic fungi isolated from root are significantly higher than those isolated from stem and leaf. The research results showed that the endophytic fungi in Artemisia annua had significant tissue preference, and the metabolic function of endophytic fungi showed significant difference among tissues. This will lay a foundation for further research, development and utilization of endophytic fungi, and also provide a theoretical basis for screening functional endophytic fungi in Artemisia annua.展开更多
In view of the increasing sensitivity of consumer skin in recent years, cosmetics containing Artemisia annua extract was tested to evaluate its effectiveness in repairing sensitive skin. Through the experiment of xyle...In view of the increasing sensitivity of consumer skin in recent years, cosmetics containing Artemisia annua extract was tested to evaluate its effectiveness in repairing sensitive skin. Through the experiment of xylene-induced ear swelling in mice, it was found that the inhibition rates of ear swelling in mice induced by xylene in three groups of cosmetics containing Artemisia annua extract reached 60.40%, 73.36% and 74.01%, respectively, close to the positive drug group. Twenty-five sensitive skin volunteers were selected for human clinical trial, and the skin TEWL value, cuticle hydration degree and skin heme (ultra-high concentration) were tested. The results showed that using cosmetics containing Artemisia annua extract for four weeks could effectively increase the hydration degree of cheek cuticle by 63.90% and reduce transepidermal waterloss (TEWL) by 21.51%. The skin heme (ultra-high concentration) decreased by 69.14% and the affected area decreased by 77.47%. The results show that the cosmetics containing Artemisia annua extract can inhibit inflammation, repair skin barrier, improve damaged skin, and reduce redness and other sensitive skin symptoms.展开更多
Artemisinin from the plant Artemisia annua (A. annua) L., and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially...Artemisinin from the plant Artemisia annua (A. annua) L., and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investiga-tors have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic effcacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and effcacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), favonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. an-nua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T? and Tmax and greater Cmax and AUC in Plasmodium chabaudi -infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were 〉 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for 〉 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into the arsenal of drugs to combat malaria and other artemisinin-susceptible diseases.展开更多
Malaria causes many deaths around the world, particularly in Africa, which ultimately affects the socio-economic development of African countries. The resistance of Plasmodium falciparum to quinine-based drugs led to ...Malaria causes many deaths around the world, particularly in Africa, which ultimately affects the socio-economic development of African countries. The resistance of Plasmodium falciparum to quinine-based drugs led to new studies showing the efficiency of new artemisin-based drugs. The molecule artemisin is extracted from Artemisia annua a plant from China that has been used for decades in traditional Chinese medicine. The purpose of this study is to improve the production of sweet wormwood (Artemisia annua) using organic fertilizers in the north of Cote d’Ivoire. To do so, a morpho-pedological characterization of the study site was firstly performed to determine the soil type and their fertility level. Then, a randomized complete block system including two factors (the quantity of compost and the plant density) was implemented to test the effect of organic amendment and plant arrangement on the growth of Artemisia annua. Six treatments were set up: a control plot (no compost) where the plants are arranged in square (T0D1) and the plants are arranged in staggered (T0D2). Then, a treatment with compost addition of 25 t/ha where the plants are arranged in square (T1D1) and in staggered (T1D2). A treatment with compost addition of 50 t/ha where plants are arranged in square (T2D1) and in staggered (T2D2). Our results showed that the soils hosting our experimentation are Arenithic Plinthic Ferrasols with a very low level of fertility, prone to leaching and erosion. T1D2 and T2D2 treatments obtained the highest yields of 2.82 t/ha and 3.91 t/ha, respectively. Our findings indicate that a high dose of organic amendment combined with a staggered plant arrangement strongly improves the biomass production of sweet wormwood. This is in agreement with previous studies showing that the addition of organic matter can restore the level of soil fertility by increasing soil porosity and the activity of micro and macroorganisms.展开更多
A new sesquiterpene(Z)-7-acetoxy-methyl-11-methyl-3-methylenedodeca-1,6,10-triene(AMDT) was isolnted and identified from the methanol extract of the hairy root culture of Artemisia annua.The structure of AMDT was ...A new sesquiterpene(Z)-7-acetoxy-methyl-11-methyl-3-methylenedodeca-1,6,10-triene(AMDT) was isolnted and identified from the methanol extract of the hairy root culture of Artemisia annua.The structure of AMDT was determined based on the analysis of spectroscopic data,notably of the 2D NMR spectra.This new compound showed cytotoxicity against human tumor cell lines 95-D and HeLa with IC<sub>50</sub> values of 27.08 and 20.12μmol/L,respectively.展开更多
Sweet wormwood (Artemisia annua L.) is a highly valued crop, native to China, whose active ingredient “artemisinin” and its derivatives: artemether and artesunate, are used to prepare anti-malaria drugs. In Zimbabwe...Sweet wormwood (Artemisia annua L.) is a highly valued crop, native to China, whose active ingredient “artemisinin” and its derivatives: artemether and artesunate, are used to prepare anti-malaria drugs. In Zimbabwe, very little has been done on improving agronomic practices that can enhance the yield of this crop. As a result, herbal gardens in Zimbabwe producing this sweet aromatic herb are realizing low leaf biomass. The objective of this study was to determine the effects of varying nitrogen fertilizer levels on growth and yield of Artemisia annua. A randomized complete block design (RCBD) was used and replicated four times. The fertilizer treatments consisted of 0, 40 kg N/ha, 80 kg N/ha, 120 kg N/ha, 160 kg N/ha and were applied as a top dress four weeks after planting. Applying 80 kg N/ha, 120 kg N/ha or 160 kg N/ha resulted in the best performance of Artemisia annua with respect to the plant height, root dry weight, stem dry weight and leaf biomass. Low N level (40 kg N/ha) recorded significantly low means in plant height, root weight, stem weight and leaf biomass. The results suggest that 80 kg N/ha should be recommended for use by Artemisia annua farmers, since there was no significant different among the three higher fertilizer levels. However there is need for further research to determine different fertilizer use efficient to come up with accurate agronomic data package for Zimbabwean farmers.展开更多
Coccidiosis is a disease caused by protozoa of the genus Eimeria which seriously affects young rabbits. Treatment based on the use of anticoccidial drugs is increasingly ineffective due to the rapid emergence of resis...Coccidiosis is a disease caused by protozoa of the genus Eimeria which seriously affects young rabbits. Treatment based on the use of anticoccidial drugs is increasingly ineffective due to the rapid emergence of resistant strains of coccidia and the high cost of drugs. Consumer demand for rabbit products without chemical residues led to a growing interest in the use of medicinal plants as an alternative treatment for coccidiosis. The present study was carried out during the period of August to December 2020 to assess the anticoccidial effect of hydro-ethanolic extract of leaves of Artemisia annua L., in young rabbits. The antiparasitic efficacy of Artemisia extract was tested on 15 young rabbits (whose age varied between 7 and 9 weeks) divided into 5 lots of 3 animals. The average weight of these animals was 790 g. The results of this study show that the feces samples and the weight of young rabbits before administration of the treatment and the coprological examination (every 7 days for 4 weeks) show a fecal excretion reduction rate (FECRT) of 55.13% in the lot treated by sulfonamide. On the other hand, in animals received treatments extract of the leaves of Artemisia annua L., the average FECRT is evaluated at 69.64%, 79.22%, and 96.36% for respective doses of 400, 800 and 1200 mg/kg bodyweight and proves their anticoccidial effect. Furthermore, the variation in mean Eggs Per Gram (EPG) of coccidia and the average weekly weight gain (AWWG) of each lot were significant in the lots treated with hydro-ethanolic extract (P 0.05). The greatest reductions in oocystal excretion and weight gain obtained were those of lot 5, treated at 1200 mg/kg of hydro-ethanolic leaves extract of Artemisia annua L.展开更多
An efficient protocol for maintaining the artemisinin content in tissue culture and high frequency of in vitro direct and indirect regenerations of multiple shoots of high artemisinin yielding genotypes of Artemisia a...An efficient protocol for maintaining the artemisinin content in tissue culture and high frequency of in vitro direct and indirect regenerations of multiple shoots of high artemisinin yielding genotypes of Artemisia annua has been developed and their comparison with field grown mother plant has been carried out.The eleven elite genotypes(containing more than 1%artemisinin)were tested on seven different modified media formulations.Modified half MS(Murashige and Skoog’s)media containing 100 mg L^(-1) myo-inositol,0.5 g L^(-1) casine hydrolysate,5 mg L^(-1) biotin,2 mL L^(-1) RT(Revised Tobacco)vitamin stock,0.5 mg L^(-1) BAP and 0.01 mg L^(-1) NAA showed best regeneration while,above modified MS medium containing 0.2 mg L^(-1) BAP and 0.2 mg L^(-1) NAA showed maximum shoot multiplication with maintained artemisinin content.Based on the chemical profiles of both the systems,minor difference was observed in their artemisinin content.A large scale culture of these plants maintained the normal growth index along with the artemisinin content and could be a better alternative to maintain the high artemisinin yielding genotypes with their genetic constraint in specific media combinations and also used as base material for further genetic improvement.展开更多
文摘Individuals with Glucose-6-phosphate dehydrogenase (G6PD) deficiency are susceptible to hemolytic anemia when exposed to pro-oxidant substances. This study investigates the hemolytic impact of Artemisia annua (A. annua) extracts in G6PD-deficient subjects through a mixed experimental approach. In the in vitro phase, red blood cells from G6PD-deficient individuals and rats induced with Dehydroepiandrosterone (DHEA) were exposed to various concentrations of A. annua infusion, with distilled water and physiological saline as positive and negative controls respectively. The in vivo study involved G6PD-deficient Wistar rats divided into three groups receiving A. annua infusion, quinine (positive control), and distilled water (negative control) via gavage. Blood samples were collected for biochemical and hematological analyses. Notably, at a 40% concentration of A. annua infusion, there was a significant increase in the hemolysis rate of G6PD-deficient red blood cells compared to controls (p A. annua exhibited elevated aspartate aminotransferase (129.25 ± 4.55 U/L vs. 80.09 ± 4.03 U/L;p A. annua infusion tested positive for saponins. These findings underscore the risk of hemolysis in G6PD-deficient individuals upon ingesting A. annua.
基金Supported by Science and Technology Plan Project of Guizhou Province,China(QKH JC[2020]1Y179)Key Field Project of Education Department of Guizhou Province(QJHKYZ[2021]044)+1 种基金Forestry Research Project of Guizhou Province(QLKH[2021]11)Project of Guizhou Provincial Characteristic Key Laboratory(QJHKY[2021]002).
文摘[Objectives]This paper was to figure out whether the dominant bacterial community has the role and effect of bacterial community and its defense mechanism against potential pathogenic fungi in Artemisia annua,and thus establish a systematic model of bacteria-fungus-plant.[Methods]Fifty-eight strains of bacteria and one strain of pathogenic fungi,Globisporangium ultimatum,were used for the experiments.These 58 bacterial strains were assembled into a bacterial community,and the bacteria with abundance in the top 1%were reassembled into a dominant bacterial community as measured by 16S rDNA.[Results]The growth of A.annua seedlings inoculated with bacterial communities and pathogenic fungi or dominant bacterial communities and pathogenic fungi was significantly better than that of A.annua seedlings inoculated with pathogenic fungi during in vitro confrontation,which was evident in both enzymatic and non-enzymatic antioxidant assays.[Conclusions]The results suggest that the dominant bacterial community has a crucial role as a representative core microbial community of synthetic bacterial community,which can protect plants by interfering with the growth of phytopathogenic fungi mediated by chemical signals,and can be used as the main synthetic community of biocides to achieve the effect of biocontrol.
文摘The artemisinin accumulation in the hairy root cultures of Artemisia annua L. was enhanced via a treatment of three fungal elicitors separately ( Verticillium dahliae Kleb., Rhizopus stolonifer (Ehrenb. ex Fr.) Vuill and Colletotrichum dematium (Pers.) Grove). Among these three elicitors, V. dahliae had the highest inducing efficiency, but none of them manifests any noticeable effects on the cell growth of the hairy root cultures. The artemisinin content of the hairy root cultures treated with V. dahliae elicitor was 1.12 mg/g DW, which was 45% higher than the control (0.77 mg/g DW). The results showed that elicitation was dependent on the elicitor concentration, the incubation period and the physiological stage at which the hairy root cultures were treated. In addition, the authors found that for V. dahliae , the optimum concentration was 0.4 mg carbohydrate per millilitre medium, the strongest response of A. annua hairy root cultures to the elicitation was at the late exponential growth stage, and the highest artemisinin content of the hairy root cultures was on the 4th day post treatment.
文摘The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.
文摘A 1 539 by squalene synthase (AaSQS) cDNA was cloned from a high-yield Artemisia annua L. strain 001 by reverse transcription-polymerise chain reaction (RT-PCR). The amino acid sequence of AaSQS is 70%, 77%, 44% and 39%a identical to that of squalene synthases from Arabidopsis thaliana, tobacco, human and yeast, respectively. The AaSQS genomic DNA has a complex organization containing 14 exons and 13 introns. Full-length or C-terminal truncated cDNA was subcloned into prokaryotic expression vector pET30a and the constructed plasmid was introduced to Escherichia coli strain BL21 (DE3) for induced overexpression. No squalene synthase protein with expected molecular mass was observed in E. cola containing the putative full-length squalene synthase cDNA, however, overexpression in E. coli was achieved by truncating 30 amino acids of hydrophobic region at the carboxy terminus.
文摘A 1 886 bp full-length sesquiterpene synthase (AaSES) cDNA was cloned front a high-yield Artemisia annua L. strain 001 by a rapid amplification of cDNA end (RACE) strategy. AaSES is 59% identical to Artemisia cyclase cDNA clone cASC125, 50% identical to epi-cedrol synthase from A. annua , 48% identical to amorpha-4, 11-diene synthase from A. annua, 39% identical to the 5-epi-aristolechene synthase from tabacco, 38 % identical to vetispiradiene synthase front H. muticus, 41 % identical to the, delta-cadinene synthase from cotton. The coding region of the cDNA was inserted into a procaryotic expression vector pET-30a and overexpressed in E. coli BL21 ( DE3). The cyclase proteins extracted front bacterial culture were found largely in an insoluble protein fraction. AaSES expresses in leaves, stems a-rid flowers, not in roots as indicated by Northern blotting analysis.
基金part of the projects supported by the National Natural Science Foundation of China(30671392).
文摘The aim of this study was to determine the best extraction technique, the most suitable solvent, the optimal plant parts, and the acaricidal activities of Artemisia annua L. The petroleum ether (30-60℃), petroleum ether (60-90℃), ethanol, acetone, and water parallel and sequenced extracts were obtained from the leaves, stems and roots of different period of A. annua L. in April, May, June, July and September respectively. And then the acaricidal bioactivities against Tetranychus cinnabarinus of all extracts were determined by the slide-capillary method in the laboratory. The results indicated that the acaricidal bioactivities elevated as the development of A. annua plant at the concentration of 5 mg mL-L The general tendency exhibited the sequence of July 〉 June 〉 May 〉 April, but September decreased comparing to July. However, the most effective extracts in five months were all acetone parallel extract of A. annua leaf, and the corrected mortalities treated after 48 h ranged from 74 to 100%. The median lethal concentrations (LC50) against T. cinnabarinus of acetone parallel extracts ofA. annua leaves in September, July, June, May and April were 0.5986, 0.4341, 0.8376, 0.9443 and 1.3817 mg mL^-1, respectively, treated after 48 h. The 13 groups were isolated from acetone extracts ofA. annua leaves in July by column chromatography, both the 1 lth and 12th groups exhibited strong bioactivities. The median lethal concentrations of the 1 lth and 12th groups against T. cinnabarinus were 0.3683 and 0.1586 mg mL^-1, respectively. The acetone parallel extract ofA. annua leaf in July was the most toxic to T. cinnabarinus and the corrected mortality was 100% after 48 h. The acetone parallel extract of the 1 lth and 12th groupswere the most active components, acted as the emphases in further study.
文摘Artemisia annua L. produces small amounts of the sesquiterpenoid artemisinin, which is used for treatment of malaria. A worldwide shortage of the drug has led to intense research to increase the yield of artemisinin in the plant. In order to study the regulation of expression of a key enzyme of artemisinin biosynthesis, the promoter region of the key enzyme amorpha-4,11-diene synthase (ADS) was cloned and fused with the β-glucuronidase (GUS) reporter gene. Transgenic plants of A. annua expressing this fusion were generated and studied. Transgenic plants expressing the GUS gene were used to establish the activity of the cloned promoter by a GUS activity staining procedure. GUS under the control of the ADS promoter showed specific expression in glandular trichomes. The activity of the ADS promoter varies temporally and in old tissues essentially no GUS staining could be observed. The expression pattern of GUS and ADS in aerial parts of the transgenic plant was essentially the same indicating that the cis-elements controlling glandular trichome specific expression are included in the cloned promoter. However, some cis-element(s) that control expression in root and old leaf appears to be missing in the cloned promoter. Furthermore, qPCR was used to compare the activity of the wild-type ADS promoter with that of the cloned ADS promoter. The latter promoter showed a considerably lower activity than the wild-type promoter as judged from the levels of GUS and ADS transcripts, respectively, which may be due to the removal of an enhancing cis-element from the ADS promoter. The ADS gene is specifically expressed in stalk and secretory cells of glandular trichomes of A. annua.
文摘To enhance the understanding of artemisinin biosynthesis, we have successfully bred self-pollination Artemisia annua plants. Here, we report efficient somatic embryogenesis and organogenesis of self-pollination plants and artemisinin formation in regenerated plants. The first through sixth nodal leaves of seedlings are used as explants. On agar-solidified MS basal medium supplemented with TDZ (0.6 mg/l) and IBA (0.1 mg/l), all explants after inoculation of less than 3 weeks start to form embryogenic calli, which further produce globular, torpedo, heart and early cotyledon embryos. In all six positional leaves, explants from the sixth leaf show the rapidest responses to induction of embryogenic calli and somatic embryos. On this medium, somatic embryos continuously develop into adventitious buds, which can form adventitious roots on a rooting medium containing NAA (0.5 mg/l). Meanwhile, on agar-solidified MS basal medium supplemented with BAP (1 mg/l) and NAA (0.05 mg/l), approximately 100% of explants from leaves #3-6 form calli in less than 3 weeks of inoculation and adventitious buds via organogenesis in 3-4 weeks. In all six positional leaves, explants from the sixth leaf exhibit the rapidest response to induction of calli and adventitious buds. Nearly 100% adventitious buds can form adventitious roots on the rooting medium. Regenerated plants from both somatic embryogenesis and organogenesis complete self-pollination to produce seeds in 80-90 days of growth in growth chamber. LC-ESI-MS analysis demonstrates that regenerated plants biosynthesize artemisinin. These results show the highly efficient regeneration capacity of self-pollination A. annua plants that can form a new platform to enhance the understanding of artemisinin biosynthesis and metabolic engineering.
文摘The endophytic fungi in different tissues of Artemisia annua was isolated and purified to explore their ecological distribution and tissue preference, and the extracellular enzyme activities of dominant endophytic fungi were determined to characterize the metabolic function of endophytic fungi. The results showed that a total of 67 endophytic fungi were obtained from Artemisia annua tissues. The number and species of endophytic fungi in different tissues were significantly different. The number, colonization rate (CR) and isolation rate (IR) of endophytic fungi in root were significantly higher than those of stem and leaf. The dominant endophytic fungi, diversity and similarity coefficient of endophytic fungi also showed significant difference among tissues. The extracellular enzyme activities of endophytic fungi in different tissues are significantly different. The enzyme activities of endophytic fungi isolated from root are significantly higher than those isolated from stem and leaf. The research results showed that the endophytic fungi in Artemisia annua had significant tissue preference, and the metabolic function of endophytic fungi showed significant difference among tissues. This will lay a foundation for further research, development and utilization of endophytic fungi, and also provide a theoretical basis for screening functional endophytic fungi in Artemisia annua.
文摘In view of the increasing sensitivity of consumer skin in recent years, cosmetics containing Artemisia annua extract was tested to evaluate its effectiveness in repairing sensitive skin. Through the experiment of xylene-induced ear swelling in mice, it was found that the inhibition rates of ear swelling in mice induced by xylene in three groups of cosmetics containing Artemisia annua extract reached 60.40%, 73.36% and 74.01%, respectively, close to the positive drug group. Twenty-five sensitive skin volunteers were selected for human clinical trial, and the skin TEWL value, cuticle hydration degree and skin heme (ultra-high concentration) were tested. The results showed that using cosmetics containing Artemisia annua extract for four weeks could effectively increase the hydration degree of cheek cuticle by 63.90% and reduce transepidermal waterloss (TEWL) by 21.51%. The skin heme (ultra-high concentration) decreased by 69.14% and the affected area decreased by 77.47%. The results show that the cosmetics containing Artemisia annua extract can inhibit inflammation, repair skin barrier, improve damaged skin, and reduce redness and other sensitive skin symptoms.
基金Supported by Worcester Polytechnic Institute and University of Massachusetts Center for Clinical and Translational Science partiallypartially by Award Number NIH-R15AT008277-01 from the National Center for Complementary and Alternative Medicine
文摘Artemisinin from the plant Artemisia annua (A. annua) L., and used as artemisinin combination therapy (ACT), is the current best therapeutic for treating malaria, a disease that hits children and adults especially in developing countries. Traditionally, A. annua was used by the Chinese as a tea to treat “fever”. More recently, investiga-tors have shown that tea infusions and oral consumption of the dried leaves of the plant have prophylactic and therapeutic effcacy. The presence of a complex matrix of chemicals within the leaves seems to enhance both the bioavailability and effcacy of artemisinin. Although about 1000-fold less potent than artemisinin in their antiplasmodial activity, these plant chemicals are mainly small molecules that include other artemisinic compounds, terpenes (mainly mono and sesqui), favonoids, and polyphenolic acids. In addition, polysaccharide constituents of A. an-nua may enhance bioavailability of artemisinin. Rodent pharmacokinetics showed longer T? and Tmax and greater Cmax and AUC in Plasmodium chabaudi -infected mice treated with A. annua dried leaves than in healthy mice. Pharmacokinetics of deoxyartemisinin, a liver metabolite of artemisinin, was more inhibited in infected than in healthy mice. In healthy mice, artemisinin serum levels were 〉 40-fold greater in dried leaf fed mice than those fed with pure artemisinin. Human trial data showed that when delivered as dried leaves, 40-fold less artemisinin was required to obtain a therapeutic response compared to pure artemisinin. ACTs are still unaffordable for many malaria patients, and cost estimates for A. annua dried leaf tablet production are orders of magnitude less than for ACT, despite improvements in the production capacity. Considering that for 〉 2000 years this plant was used in traditional Chinese medicine for treatment of fever with no apparent appearance of artemisinin drug resistance, the evidence argues for inclusion of affordable A. annua dried leaf tablets into the arsenal of drugs to combat malaria and other artemisinin-susceptible diseases.
文摘Malaria causes many deaths around the world, particularly in Africa, which ultimately affects the socio-economic development of African countries. The resistance of Plasmodium falciparum to quinine-based drugs led to new studies showing the efficiency of new artemisin-based drugs. The molecule artemisin is extracted from Artemisia annua a plant from China that has been used for decades in traditional Chinese medicine. The purpose of this study is to improve the production of sweet wormwood (Artemisia annua) using organic fertilizers in the north of Cote d’Ivoire. To do so, a morpho-pedological characterization of the study site was firstly performed to determine the soil type and their fertility level. Then, a randomized complete block system including two factors (the quantity of compost and the plant density) was implemented to test the effect of organic amendment and plant arrangement on the growth of Artemisia annua. Six treatments were set up: a control plot (no compost) where the plants are arranged in square (T0D1) and the plants are arranged in staggered (T0D2). Then, a treatment with compost addition of 25 t/ha where the plants are arranged in square (T1D1) and in staggered (T1D2). A treatment with compost addition of 50 t/ha where plants are arranged in square (T2D1) and in staggered (T2D2). Our results showed that the soils hosting our experimentation are Arenithic Plinthic Ferrasols with a very low level of fertility, prone to leaching and erosion. T1D2 and T2D2 treatments obtained the highest yields of 2.82 t/ha and 3.91 t/ha, respectively. Our findings indicate that a high dose of organic amendment combined with a staggered plant arrangement strongly improves the biomass production of sweet wormwood. This is in agreement with previous studies showing that the addition of organic matter can restore the level of soil fertility by increasing soil porosity and the activity of micro and macroorganisms.
基金Financial support from the Shanghai Leading Academic Discipline Project(No.B203 and B505)
文摘A new sesquiterpene(Z)-7-acetoxy-methyl-11-methyl-3-methylenedodeca-1,6,10-triene(AMDT) was isolnted and identified from the methanol extract of the hairy root culture of Artemisia annua.The structure of AMDT was determined based on the analysis of spectroscopic data,notably of the 2D NMR spectra.This new compound showed cytotoxicity against human tumor cell lines 95-D and HeLa with IC<sub>50</sub> values of 27.08 and 20.12μmol/L,respectively.
文摘Sweet wormwood (Artemisia annua L.) is a highly valued crop, native to China, whose active ingredient “artemisinin” and its derivatives: artemether and artesunate, are used to prepare anti-malaria drugs. In Zimbabwe, very little has been done on improving agronomic practices that can enhance the yield of this crop. As a result, herbal gardens in Zimbabwe producing this sweet aromatic herb are realizing low leaf biomass. The objective of this study was to determine the effects of varying nitrogen fertilizer levels on growth and yield of Artemisia annua. A randomized complete block design (RCBD) was used and replicated four times. The fertilizer treatments consisted of 0, 40 kg N/ha, 80 kg N/ha, 120 kg N/ha, 160 kg N/ha and were applied as a top dress four weeks after planting. Applying 80 kg N/ha, 120 kg N/ha or 160 kg N/ha resulted in the best performance of Artemisia annua with respect to the plant height, root dry weight, stem dry weight and leaf biomass. Low N level (40 kg N/ha) recorded significantly low means in plant height, root weight, stem weight and leaf biomass. The results suggest that 80 kg N/ha should be recommended for use by Artemisia annua farmers, since there was no significant different among the three higher fertilizer levels. However there is need for further research to determine different fertilizer use efficient to come up with accurate agronomic data package for Zimbabwean farmers.
文摘Coccidiosis is a disease caused by protozoa of the genus Eimeria which seriously affects young rabbits. Treatment based on the use of anticoccidial drugs is increasingly ineffective due to the rapid emergence of resistant strains of coccidia and the high cost of drugs. Consumer demand for rabbit products without chemical residues led to a growing interest in the use of medicinal plants as an alternative treatment for coccidiosis. The present study was carried out during the period of August to December 2020 to assess the anticoccidial effect of hydro-ethanolic extract of leaves of Artemisia annua L., in young rabbits. The antiparasitic efficacy of Artemisia extract was tested on 15 young rabbits (whose age varied between 7 and 9 weeks) divided into 5 lots of 3 animals. The average weight of these animals was 790 g. The results of this study show that the feces samples and the weight of young rabbits before administration of the treatment and the coprological examination (every 7 days for 4 weeks) show a fecal excretion reduction rate (FECRT) of 55.13% in the lot treated by sulfonamide. On the other hand, in animals received treatments extract of the leaves of Artemisia annua L., the average FECRT is evaluated at 69.64%, 79.22%, and 96.36% for respective doses of 400, 800 and 1200 mg/kg bodyweight and proves their anticoccidial effect. Furthermore, the variation in mean Eggs Per Gram (EPG) of coccidia and the average weekly weight gain (AWWG) of each lot were significant in the lots treated with hydro-ethanolic extract (P 0.05). The greatest reductions in oocystal excretion and weight gain obtained were those of lot 5, treated at 1200 mg/kg of hydro-ethanolic leaves extract of Artemisia annua L.
文摘An efficient protocol for maintaining the artemisinin content in tissue culture and high frequency of in vitro direct and indirect regenerations of multiple shoots of high artemisinin yielding genotypes of Artemisia annua has been developed and their comparison with field grown mother plant has been carried out.The eleven elite genotypes(containing more than 1%artemisinin)were tested on seven different modified media formulations.Modified half MS(Murashige and Skoog’s)media containing 100 mg L^(-1) myo-inositol,0.5 g L^(-1) casine hydrolysate,5 mg L^(-1) biotin,2 mL L^(-1) RT(Revised Tobacco)vitamin stock,0.5 mg L^(-1) BAP and 0.01 mg L^(-1) NAA showed best regeneration while,above modified MS medium containing 0.2 mg L^(-1) BAP and 0.2 mg L^(-1) NAA showed maximum shoot multiplication with maintained artemisinin content.Based on the chemical profiles of both the systems,minor difference was observed in their artemisinin content.A large scale culture of these plants maintained the normal growth index along with the artemisinin content and could be a better alternative to maintain the high artemisinin yielding genotypes with their genetic constraint in specific media combinations and also used as base material for further genetic improvement.