Isolation of new bacterial strains and recognition of their metabolic activities are highly desirable for sustainability of natural ecosystems. Biodegradation of dimethyl phthalate (DMP) under anoxic conditions has ...Isolation of new bacterial strains and recognition of their metabolic activities are highly desirable for sustainability of natural ecosystems. Biodegradation of dimethyl phthalate (DMP) under anoxic conditions has been shown to occur as a series of sequential steps using strain CW-1 isolated from digested sludge of Sibao Wastewater Treatment Plant in Hangzhou, China. The microbial colony on LB medium was yellowish, 3-5 mm in diameter, convex in the center, and embedded in mucous externally. The individual cells of strain CW-1 are irregular rods, measuring (0.6-0.7)×(0.9-1.0) pm, V-shaped, with clubbed ends, Gram positive and without any filaments. 16S rDNA ( 1438 bp) sequence analysis showed that the strain was related to Arthrobacter sp. CW-1 and can degrade PAEs utilizing nitrate as electron acceptor, but cannot mineralize DMP completely. The degradation pathway was recommended as: dimethyl phthalate (DMP)→monomethyl phthalate (MMP)--,phthalic acid (PA). DMP biodegradation was a first order reaction with degradation rate constant of 0.3033 d 1 and half-life 2.25 d. The DMP conversion to PA by CW-1 could be described by using sequential kinetic model.展开更多
Atrazine chlorohydrolase gene (atzA) was cloned from Arthrobacter sp. AD1. A plant expression plasmid was constructed under the control of CaMV35s promoter and was used in rice transformation. The target gene was succ...Atrazine chlorohydrolase gene (atzA) was cloned from Arthrobacter sp. AD1. A plant expression plasmid was constructed under the control of CaMV35s promoter and was used in rice transformation. The target gene was successfully introduced into mature embryos of a japonica rice cultivar Jindao 107 by Agrobacterium- mediated transformation and hundreds of transgenic plants were obtained. The exogenous atzA gene in the transgenic plants that expressed atrazine resistance was confirmed by Southern blot hybridization. The resistance experiments by spraying transgenic rice plants with 0.133% atrazine shown that most of the transgenic rice plants exhibited the resistance to herbicide atrazine. The segregation of exogenous atzA gene in T1 progeny corresponded to the Mendelian ratio.展开更多
文摘Isolation of new bacterial strains and recognition of their metabolic activities are highly desirable for sustainability of natural ecosystems. Biodegradation of dimethyl phthalate (DMP) under anoxic conditions has been shown to occur as a series of sequential steps using strain CW-1 isolated from digested sludge of Sibao Wastewater Treatment Plant in Hangzhou, China. The microbial colony on LB medium was yellowish, 3-5 mm in diameter, convex in the center, and embedded in mucous externally. The individual cells of strain CW-1 are irregular rods, measuring (0.6-0.7)×(0.9-1.0) pm, V-shaped, with clubbed ends, Gram positive and without any filaments. 16S rDNA ( 1438 bp) sequence analysis showed that the strain was related to Arthrobacter sp. CW-1 and can degrade PAEs utilizing nitrate as electron acceptor, but cannot mineralize DMP completely. The degradation pathway was recommended as: dimethyl phthalate (DMP)→monomethyl phthalate (MMP)--,phthalic acid (PA). DMP biodegradation was a first order reaction with degradation rate constant of 0.3033 d 1 and half-life 2.25 d. The DMP conversion to PA by CW-1 could be described by using sequential kinetic model.
基金This work was suppored by the Natural Foundation of Tianjin,China(013066 11)the Agricultural Bio—technology Center ofTianjin,China(00312201l一4).
文摘Atrazine chlorohydrolase gene (atzA) was cloned from Arthrobacter sp. AD1. A plant expression plasmid was constructed under the control of CaMV35s promoter and was used in rice transformation. The target gene was successfully introduced into mature embryos of a japonica rice cultivar Jindao 107 by Agrobacterium- mediated transformation and hundreds of transgenic plants were obtained. The exogenous atzA gene in the transgenic plants that expressed atrazine resistance was confirmed by Southern blot hybridization. The resistance experiments by spraying transgenic rice plants with 0.133% atrazine shown that most of the transgenic rice plants exhibited the resistance to herbicide atrazine. The segregation of exogenous atzA gene in T1 progeny corresponded to the Mendelian ratio.