The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bo...The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bone marrow-derived mesenchymal stem cells(MSCs)in vitro.The full-length rat TGF-β_(1)cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418,a synthetic neomycin analog.The transient and stable expression of TGF-β_(1)by MSCs was detected by using immunohistochemical staining.The lipofectamine-mediated gene therapy efficiently transfected MSCs in vitro with the TGF-β_(1)gene causing a marked up-regulation in TGF-β_(1)expression as compared with the vector-transfected control groups,and the increased expression persisted for at least 4 weeks after selected with G418.It was suggested that bone marrow-derived MSCs were susceptible to in vitro lipofectamine mediated TGF-β_(1)gene transfer and that transgene expression persisted for at least 4 weeks.Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by modern gene transfer technology,an innovative concept,i.e.molecular tissue engineering,are put forward for the first time.As a new branch of tissue engineering,it represents both a new area and an important trend in research.Using this technique,we have a new powerful tool with which:(1)to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and(2)to affect a better repair of full-thickness articular cartilage defects that occur as a result of injury and osteoarthritis.展开更多
The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basi...The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.展开更多
Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering i...Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering is one promising strategy for cartilage repair,however,one critical issue for cartilage tissue engineering is the integration between tissue-engineered and native cartilage.In recent years,osteochondral tissue engineering has attracted growing interest for overcoming this problem.Herein,we review the development of osteochondral tissue engineering.Firstly,currently used seed cells in osteochondral tissue engineering will be described.Secondly,several types of scaffolds and their(dis)advantage for osteochondral tissue engineering will be introduced.Thirdly,the growth factors currently used in osteochondral tissue engineering will be presented and discussed.展开更多
As an emerging type of adult stem cell featuring non-invasive acquisition,urine-derived stem cells(USCs)have shown great potential for applications in tissue engineering and regenerative medicine.With a growing amount...As an emerging type of adult stem cell featuring non-invasive acquisition,urine-derived stem cells(USCs)have shown great potential for applications in tissue engineering and regenerative medicine.With a growing amount of research on the topic,the effectiveness of USCs in various disease models has been shown and the underlying mechanisms have also been explored,though many aspects still remain unclear.In this review,we aim to provide an up-to-date overview of the biological characteristics of USCs and their applications in skin,bone and articular cartilage repair.In addition to the identification procedure of USCs,we also summarize current knowledge of the underlying repair mechanisms and application modes of USCs.Potential concerns and perspectives have also been summarized.展开更多
文摘The feasibility of using gene therapy to treat full-thickness articular cartilage defects was investigated with respect to the transfection and expression of exogenous transforming growth factor(TGF)-β_(1)genes in bone marrow-derived mesenchymal stem cells(MSCs)in vitro.The full-length rat TGF-β_(1)cDNA was transfected to MSCs mediated by lipofectamine and then selected with G418,a synthetic neomycin analog.The transient and stable expression of TGF-β_(1)by MSCs was detected by using immunohistochemical staining.The lipofectamine-mediated gene therapy efficiently transfected MSCs in vitro with the TGF-β_(1)gene causing a marked up-regulation in TGF-β_(1)expression as compared with the vector-transfected control groups,and the increased expression persisted for at least 4 weeks after selected with G418.It was suggested that bone marrow-derived MSCs were susceptible to in vitro lipofectamine mediated TGF-β_(1)gene transfer and that transgene expression persisted for at least 4 weeks.Having successfully combined the existing techniques of tissue engineering with the novel possibilities offered by modern gene transfer technology,an innovative concept,i.e.molecular tissue engineering,are put forward for the first time.As a new branch of tissue engineering,it represents both a new area and an important trend in research.Using this technique,we have a new powerful tool with which:(1)to modify the functional biology of articular tissue repair along defined pathways of growth and differentiation and(2)to affect a better repair of full-thickness articular cartilage defects that occur as a result of injury and osteoarthritis.
基金This project was supported by a grant from NationalNatural Science Foundation of China (No. 30 170 2 70 )
文摘The effect of transforming growth factor β 1 (TGF β 1 ) gene transfection on the proliferation of bone marrow derived mesenchymal stem cells (MSC S ) and the mechanism was investigated to provide basis for accelerating articular cartilage repairing using molecular tissue engineering technology. TGF β 1 gene at different doses was transduced into the rat bone marrow derived MSCs to examine the effects of TGF β 1 gene transfection on MSCs DNA synthesis, cell cycle kinetics and the expression of proliferating cell nuclear antigen (PCNA). The results showed that 3 μl lipofectamine mediated 1 μg TGF β 1 gene transfection could effectively promote the proliferation of MSCs best; Under this condition (DNA/Lipofectamine=1μg/3μl), flow cytometry and immunohistochemical analyses revealed a significant increase in the 3 H incorporation, DNA content in S phase and the expression of PCNA. Transfection of gene encoding TGF β 1 could induce the cells at G0/G1 phase to S1 phase, modulate the replication of DNA through the enhancement of the PCNA expression, increase the content of DNA at S1 phase and promote the proliferation of MSCs. This new molecular tissue engineering approach could be of potential benefit to enhance the repair of damaged articular cartilage, especially those caused by degenerative joint diseases.
文摘Repair and regeneration of articular cartilage has always been a major challenge in the medical field due to its peculiar structure(e.g.sparsely distributed chondrocytes,no blood supply).Cartilage tissue engineering is one promising strategy for cartilage repair,however,one critical issue for cartilage tissue engineering is the integration between tissue-engineered and native cartilage.In recent years,osteochondral tissue engineering has attracted growing interest for overcoming this problem.Herein,we review the development of osteochondral tissue engineering.Firstly,currently used seed cells in osteochondral tissue engineering will be described.Secondly,several types of scaffolds and their(dis)advantage for osteochondral tissue engineering will be introduced.Thirdly,the growth factors currently used in osteochondral tissue engineering will be presented and discussed.
基金supported by National Natural Science Foundation of China(Grant No.31771065)the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Grant No.ZYJC18002).
文摘As an emerging type of adult stem cell featuring non-invasive acquisition,urine-derived stem cells(USCs)have shown great potential for applications in tissue engineering and regenerative medicine.With a growing amount of research on the topic,the effectiveness of USCs in various disease models has been shown and the underlying mechanisms have also been explored,though many aspects still remain unclear.In this review,we aim to provide an up-to-date overview of the biological characteristics of USCs and their applications in skin,bone and articular cartilage repair.In addition to the identification procedure of USCs,we also summarize current knowledge of the underlying repair mechanisms and application modes of USCs.Potential concerns and perspectives have also been summarized.