Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected pr...The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected problems both of human origins in the universe and mankind’s digital future.And,besides,such an approach allows to deal with self-organising interconversions between the poles of the cardinal dual opposition of the Global Noosphere Brain and the Artificial General Intelligence.Herewith such phenomena of digital social life as Global Digitalisation,Digital Immortality,Mindcloning,and Technological Zombification being the constituents of Technological Singularity Concept,are rethought as paving the way for oncoming Posthuman Digital Era.This concept is evidently exemplified by a bifurcation resulting in two alternatives to be chosen by human beings,to wit,either to be undergone Mindcloning and become digitally immortal or being destroyed by powerful intelligent machines.The investigation in question is based on such a progressive methodology as the Law of Self-Organizing Ideals,as well as on the Method of Dual Oppositions.Rethinking interrelationships between the problem of a sense of social history and the meaning-of-life of local societies members which any intelligent machine is devoid of permits to substantiate specific regularities of Self-Transforming Homo Faber into Homo Digitalis and Technological Zombies ready to be transferred to posthuman cyberspace.展开更多
The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to defi...The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to define and evaluate AGI remain unclear.This perspective article proposes that the evaluation of AGI should be rooted in dynamic embodied physical and social interactions(DEPSI).More specifically,we propose five critical characteristics to be considered as AGI benchmarks and suggest the Tong test as an AGI evaluation system.The Tong test describes a value-and ability-oriented testing system that delineates five levels of AGI milestones through a virtual environment with DEPSI,allowing for infinite task generation.We contrast the Tong test with classical AI testing systems in terms of various aspects and propose a systematic evaluation system to promote standardized,quantitative,and objective benchmarks and evaluation of AGI.展开更多
This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to the...This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to theoretical models,then to computational simulation and data intensive science,and finally introduces intelligent computing as the core of the fifth paradigm.Intelligent computing enhances the ability to understand,predict,and automate scientific discoveries of complex systems through technologies such as deep learning and machine learning.The article further analyzes the applications of intelligent computing in fields such as bioinformatics,astronomy,climate science,materials science,and medical image analysis,demonstrating its practical utility in solving scientific problems and promoting knowledge development.Finally,the article predicts that intelligent computing will play a more critical role in future scientific research,promoting interdisciplinary integration,open science,and collaboration,providing new solutions for solving complex problems.展开更多
This paper proposes and illustrates an AI embedded object-oriented methodology to formulate the computable general equilibrium (CGE) models. In this framework, a CGE model is viewed as a collection of objects embedd...This paper proposes and illustrates an AI embedded object-oriented methodology to formulate the computable general equilibrium (CGE) models. In this framework, a CGE model is viewed as a collection of objects embedded AI or namely agents in computer world, corresponding to economic agents and entities in real world, such as government, households, markets and so on. A frame representation of major objects in CGE model is used for trade and environment. Embedded Al object-oriented approach (or software agent) is used in the CGE model representation can able to narrow the gap among the semantic representation, formal CGE (mathematical) representation and computer and algorithm representation, and to improve CGE in understanding and maintenance etc. In such a system, constructing a CGE model to appear an intuitive process rather than an abstract process. This intuitive process needs more understanding of the substance of economics and the logic underlying the problem rather than mathematical notation.展开更多
以ChatGPT为代表的大规模生成式预训练语言模型带动了一系列通用人工智能(AGI:Artificial General Intelligence)技术的迅速发展。AGI已经掀起新一轮信息技术革命,成为一种先进的生产力,深入理解AGI的本质显得尤为迫切。大规模生成式语...以ChatGPT为代表的大规模生成式预训练语言模型带动了一系列通用人工智能(AGI:Artificial General Intelligence)技术的迅速发展。AGI已经掀起新一轮信息技术革命,成为一种先进的生产力,深入理解AGI的本质显得尤为迫切。大规模生成式语言模型为代表的通用人工智能技术,以生成式AI为主要形态,具备情景化生成能力,形成了知识、能力、价值三个阶段的智能炼就路径。随着相关技术的发展,机器的智能水平快速提升,将带来人机边界模糊及与其相关的一系列社会问题。AGI的发展路径具有“填鸭灌输”式学习、“先通再专”等特点,在一定程度上颠覆了人类对机器智能实现路径的传统认识,倒逼人类在世界建模、知识获取、自我认知等层面进行反思。人类需高度警醒AGI带来的挑战,并积极抓住其带来的机遇,推动构建新型的人机和谐关系。展开更多
To achieve the artificial general intelligence (AGI), imitate the intelligence? or imitate the brain? This is the question! Most artificial intelligence (AI) approaches set the understanding of the intelligence ...To achieve the artificial general intelligence (AGI), imitate the intelligence? or imitate the brain? This is the question! Most artificial intelligence (AI) approaches set the understanding of the intelligence principle as their premise. This may be correct to implement specific intelligence such as computing, symbolic logic, or what the AlphaGo could do. However, this is not correct for AGI, because to understand the principle of the brain intelligence is one of the most difficult challenges for our human beings. It is not wise to set such a question as the premise of the AGI mission. To achieve AGI, a practical approach is to build the so-called neurocomputer, which could be trained to produce autonomous intelligence and AGI. A neurocomputer imitates the biological neural network with neuromorphic devices which emulate the bio-neurons, synapses and other essential neural components. The neurocomputer could perceive the environment via sensors and interact with other entities via a physical body. The philosophy under the "new" approach, so-called as imitationalism in this paper, is the engineering methodology which has been practiced for thousands of years, and for many cases, such as the invention of the first airplane, succeeded. This paper compares the neurocomputer with the conventional computer. The major progress about neurocomputer is also reviewed.展开更多
Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opini...Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opinion. However, despite deepfake technology’s risks, current deepfake detection methods lack generalization and are inconsistent when applied to unknown videos, i.e., videos on which they have not been trained. The purpose of this study is to develop a generalizable deepfake detection model by training convoluted neural networks (CNNs) to classify human facial features in videos. The study formulated the research questions: “How effectively does the developed model provide reliable generalizations?” A CNN model was trained to distinguish between real and fake videos using the facial features of human subjects in videos. The model was trained, validated, and tested using the FaceForensiq++ dataset, which contains more than 500,000 frames and subsets of the DFDC dataset, totaling more than 22,000 videos. The study demonstrated high generalizability, as the accuracy of the unknown dataset was only marginally (about 1%) lower than that of the known dataset. The findings of this study indicate that detection systems can be more generalizable, lighter, and faster by focusing on just a small region (the human face) of an entire video.展开更多
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
文摘本文对生成式AI(Generative artificial intelligence,GenAI)的国内外发展现状进行了概述,重点分析了中美之间在算力、数据、算法、生态等方面存在的差距.为改变我国在生成式AI领域的落后现状,提出高能效算力建设、联邦数据、专业领域模型、基于TAO的联邦生态等应对策略,对大模型时代AI安全治理进行了论述,对通用人工智能(Artificial general intelligence,AGI)的未来发展进行了展望.
文摘The article is focused on discussing a new methodological approach to the study on specifics of transferring human beings to the posthuman cyber society.The approach in question assists in rethinking interconnected problems both of human origins in the universe and mankind’s digital future.And,besides,such an approach allows to deal with self-organising interconversions between the poles of the cardinal dual opposition of the Global Noosphere Brain and the Artificial General Intelligence.Herewith such phenomena of digital social life as Global Digitalisation,Digital Immortality,Mindcloning,and Technological Zombification being the constituents of Technological Singularity Concept,are rethought as paving the way for oncoming Posthuman Digital Era.This concept is evidently exemplified by a bifurcation resulting in two alternatives to be chosen by human beings,to wit,either to be undergone Mindcloning and become digitally immortal or being destroyed by powerful intelligent machines.The investigation in question is based on such a progressive methodology as the Law of Self-Organizing Ideals,as well as on the Method of Dual Oppositions.Rethinking interrelationships between the problem of a sense of social history and the meaning-of-life of local societies members which any intelligent machine is devoid of permits to substantiate specific regularities of Self-Transforming Homo Faber into Homo Digitalis and Technological Zombies ready to be transferred to posthuman cyberspace.
基金supported by the National Key Research and Development Program of China (2022ZD0114900).
文摘The release of the generative pre-trained transformer(GPT)series has brought artificial general intelligence(AGI)to the forefront of the artificial intelligence(AI)field once again.However,the questions of how to define and evaluate AGI remain unclear.This perspective article proposes that the evaluation of AGI should be rooted in dynamic embodied physical and social interactions(DEPSI).More specifically,we propose five critical characteristics to be considered as AGI benchmarks and suggest the Tong test as an AGI evaluation system.The Tong test describes a value-and ability-oriented testing system that delineates five levels of AGI milestones through a virtual environment with DEPSI,allowing for infinite task generation.We contrast the Tong test with classical AI testing systems in terms of various aspects and propose a systematic evaluation system to promote standardized,quantitative,and objective benchmarks and evaluation of AGI.
文摘This article explores the key role of intelligent computing in driving the paradigm shift of scientific discovery.The article first outlines the five paradigms of scientific discovery,from empirical observation to theoretical models,then to computational simulation and data intensive science,and finally introduces intelligent computing as the core of the fifth paradigm.Intelligent computing enhances the ability to understand,predict,and automate scientific discoveries of complex systems through technologies such as deep learning and machine learning.The article further analyzes the applications of intelligent computing in fields such as bioinformatics,astronomy,climate science,materials science,and medical image analysis,demonstrating its practical utility in solving scientific problems and promoting knowledge development.Finally,the article predicts that intelligent computing will play a more critical role in future scientific research,promoting interdisciplinary integration,open science,and collaboration,providing new solutions for solving complex problems.
文摘This paper proposes and illustrates an AI embedded object-oriented methodology to formulate the computable general equilibrium (CGE) models. In this framework, a CGE model is viewed as a collection of objects embedded AI or namely agents in computer world, corresponding to economic agents and entities in real world, such as government, households, markets and so on. A frame representation of major objects in CGE model is used for trade and environment. Embedded Al object-oriented approach (or software agent) is used in the CGE model representation can able to narrow the gap among the semantic representation, formal CGE (mathematical) representation and computer and algorithm representation, and to improve CGE in understanding and maintenance etc. In such a system, constructing a CGE model to appear an intuitive process rather than an abstract process. This intuitive process needs more understanding of the substance of economics and the logic underlying the problem rather than mathematical notation.
文摘以ChatGPT为代表的大规模生成式预训练语言模型带动了一系列通用人工智能(AGI:Artificial General Intelligence)技术的迅速发展。AGI已经掀起新一轮信息技术革命,成为一种先进的生产力,深入理解AGI的本质显得尤为迫切。大规模生成式语言模型为代表的通用人工智能技术,以生成式AI为主要形态,具备情景化生成能力,形成了知识、能力、价值三个阶段的智能炼就路径。随着相关技术的发展,机器的智能水平快速提升,将带来人机边界模糊及与其相关的一系列社会问题。AGI的发展路径具有“填鸭灌输”式学习、“先通再专”等特点,在一定程度上颠覆了人类对机器智能实现路径的传统认识,倒逼人类在世界建模、知识获取、自我认知等层面进行反思。人类需高度警醒AGI带来的挑战,并积极抓住其带来的机遇,推动构建新型的人机和谐关系。
基金supported by the Natural Science Foundation of China(Nos.61425025 and 61390515)
文摘To achieve the artificial general intelligence (AGI), imitate the intelligence? or imitate the brain? This is the question! Most artificial intelligence (AI) approaches set the understanding of the intelligence principle as their premise. This may be correct to implement specific intelligence such as computing, symbolic logic, or what the AlphaGo could do. However, this is not correct for AGI, because to understand the principle of the brain intelligence is one of the most difficult challenges for our human beings. It is not wise to set such a question as the premise of the AGI mission. To achieve AGI, a practical approach is to build the so-called neurocomputer, which could be trained to produce autonomous intelligence and AGI. A neurocomputer imitates the biological neural network with neuromorphic devices which emulate the bio-neurons, synapses and other essential neural components. The neurocomputer could perceive the environment via sensors and interact with other entities via a physical body. The philosophy under the "new" approach, so-called as imitationalism in this paper, is the engineering methodology which has been practiced for thousands of years, and for many cases, such as the invention of the first airplane, succeeded. This paper compares the neurocomputer with the conventional computer. The major progress about neurocomputer is also reviewed.
文摘Deepfake technology can be used to replace people’s faces in videos or pictures to show them saying or doing things they never said or did. Deepfake media are often used to extort, defame, and manipulate public opinion. However, despite deepfake technology’s risks, current deepfake detection methods lack generalization and are inconsistent when applied to unknown videos, i.e., videos on which they have not been trained. The purpose of this study is to develop a generalizable deepfake detection model by training convoluted neural networks (CNNs) to classify human facial features in videos. The study formulated the research questions: “How effectively does the developed model provide reliable generalizations?” A CNN model was trained to distinguish between real and fake videos using the facial features of human subjects in videos. The model was trained, validated, and tested using the FaceForensiq++ dataset, which contains more than 500,000 frames and subsets of the DFDC dataset, totaling more than 22,000 videos. The study demonstrated high generalizability, as the accuracy of the unknown dataset was only marginally (about 1%) lower than that of the known dataset. The findings of this study indicate that detection systems can be more generalizable, lighter, and faster by focusing on just a small region (the human face) of an entire video.