This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni...This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings.展开更多
Objective Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods The first step was to build a text mining and analysis envir...Objective Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods The first step was to build a text mining and analysis environment based on Python language, and built a corpus based on the core chapters of SESD. The second step was to digitalize the corpus. The main steps included word segmentation, information cleaning and merging, document-entry matrix, dictionary compilation and information conversion. The third step was to mine and display the internal information of SESD corpus by means of word cloud, keyword extraction and visualization. Results NLP played a positive role in computer recognition and comprehension of SESD. Different chapters had different keywords and weights. Deficiency syndrome elements were an important component of SESD, such as "Qi deficiency""Yang deficiency" and "Yin deficiency". The important syndrome elements of substantiality included "Blood stasis""Qi stagnation", etc. Core syndrome elements were closely related. Conclusions Syndrome differentiation and treatment was the core of SESD. Using NLP to excavate syndromes differentiation could help reveal the internal relationship between syndromes differentiation and provide basis for artificial intelligence to learn syndromes differentiation.展开更多
Artificial intelligence and machine-learning are widely applied in all domain applications,including computer vision and natural language processing(NLP).We briefly discuss the development of edge detection,which play...Artificial intelligence and machine-learning are widely applied in all domain applications,including computer vision and natural language processing(NLP).We briefly discuss the development of edge detection,which plays an important role in representing the salience features in a wide range of computer vision applications.Meanwhile,transformer-based deep models facilitate the usage of NLP application.We introduce two ongoing research projects for pharmaceutical industry and business negotiation.We also selected five papers in the related areas for this journal issue.展开更多
Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in...Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media.For instance,using natural language processing(NLP)methods,social media can be leveraged to obtain crucial information on the present situation during disasters.In this work,tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model.This investigation employed sentiment analysis(SA)to determine the people’s expressed negative attitudes regarding the disaster.We apply a machine learning algorithm and evaluate the performance using the standard metrics,namely root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE).Our random forest(RF)classifier outperforms comparable works with an accuracy of 98.10%.In order to gain a competitive edge,the study shows how Twitter(now X)data and machine learning(ML)techniques can analyze public discourse and sentiments regarding disasters.It does this by comparing positive and negative comments in order to develop strategies to deal with public sentiments on disasters.展开更多
The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the...The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the high complexity of time and less information about the 3D model. The research is extended and process card is treated as part of the 3D reconstruction. A set of process data is a superset of 2D engineering drawings set. The set comprises process drawings and process steps, and shows a sequencing and asymptotic course that a part is made from roughcast blank to final product. According to these characteristics, the object to be reconstructed is translated from the complicated engineering drawings into a series of much simpler process drawings. With the plentiful process information added for reconstruction, the disturbances such as irrelevant graph, symbol and label, etc. can be avoided. And more, the form change of both neighbor process drawings is so little that the engineering drawings interpretation has no difficulty; in addition, the abnormal solution and multi-solution can be avoided during reconstruction, and the problems of being applicable to more objects is solved ultimately. Therefore, the utility method for 3D reconstruction model will be possible. On the other hand, the feature information in process cards is provided for reconstruction model. Focusing on process cards, the feasibility and requirements of Working Procedure Model reconstruction is analyzed, and the method to apply and implement the Natural Language Understanding into the 3D reconstruction is studied. The method of asymptotic approximation product was proposed, by which a 3D process model can be constructed automatically and intelligently. The process model not only includes the information about parts characters, but also can deliver the information of design, process and engineering to the downstream applications.展开更多
With the exponential growth in data processing capabilities and the progressive intertwining of medicine with industry,artificial intelligence(AI)has gained widespread application in the medical domain.Currently,AI is...With the exponential growth in data processing capabilities and the progressive intertwining of medicine with industry,artificial intelligence(AI)has gained widespread application in the medical domain.Currently,AI is extensively utilized across various aspects of trauma orthopedics,including fracture identification,diagnosis and stratification,prevention strategies for falls and fractures,emergency management,and perioperative and prognostic risk assessments.This study delves into the research progress and challenges of AI in orthopedic trauma,including the clinical applications of machine learning,deep learning,and natural language processing.By illuminating these dynamic research avenues,this study aimed to catalyze interdisciplinary collaboration and spur innovation at the intersection of AI and orthopedic trauma,ultimately advancing the frontiers of patient care and clinical practice.展开更多
自然语言到结构化查询语言(natural language to structured query language,NL2SQL)任务旨在将自然语言询问转化为数据库可执行的结构化查询语言(structured query language,SQL)语句。本文提出了一种辅助任务增强的中文跨域NL2SQL算法...自然语言到结构化查询语言(natural language to structured query language,NL2SQL)任务旨在将自然语言询问转化为数据库可执行的结构化查询语言(structured query language,SQL)语句。本文提出了一种辅助任务增强的中文跨域NL2SQL算法,其核心思想是通过在解码阶段添加辅助任务以结合原始模型来进行多任务训练,提升模型的准确率。辅助任务的设计是通过将数据库模式建模成图,预测自然语言询问与数据库模式图中的节点的依赖关系,显式地建模自然语言询问和数据库模式之间的依赖关系。针对特定的自然语言询问,通过辅助任务的提升,模型能够更好地识别数据库模式中哪些表/列对预测目标SQL更有效。在中文NL2SQL数据集DuSQL上的实验结果表明,添加辅助任务后的算法相对于原始模型取得了更好的效果,能够更好地处理跨域NL2SQL任务。展开更多
近年来,大语言模型(large language model,LLM)在一系列下游任务中得到了广泛应用,并在多个领域表现出了卓越的文本理解、生成与推理能力.然而,越狱攻击正成为大语言模型的新兴威胁.越狱攻击能够绕过大语言模型的安全机制,削弱价值观对...近年来,大语言模型(large language model,LLM)在一系列下游任务中得到了广泛应用,并在多个领域表现出了卓越的文本理解、生成与推理能力.然而,越狱攻击正成为大语言模型的新兴威胁.越狱攻击能够绕过大语言模型的安全机制,削弱价值观对齐的影响,诱使经过对齐的大语言模型产生有害输出.越狱攻击带来的滥用、劫持、泄露等问题已对基于大语言模型的对话系统与应用程序造成了严重威胁.对近年的越狱攻击研究进行了系统梳理,并基于攻击原理将其分为基于人工设计的攻击、基于模型生成的攻击与基于对抗性优化的攻击3类.详细总结了相关研究的基本原理、实施方法与研究结论,全面回顾了大语言模型越狱攻击的发展历程,为后续的研究提供了有效参考.对现有的安全措施进行了简略回顾,从内部防御与外部防御2个角度介绍了能够缓解越狱攻击并提高大语言模型生成内容安全性的相关技术,并对不同方法的利弊进行了罗列与比较.在上述工作的基础上,对大语言模型越狱攻击领域的现存问题与前沿方向进行探讨,并结合多模态、模型编辑、多智能体等方向进行研究展望.展开更多
文摘This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings.
基金the funding support from the National Natural Science Foundation of China (No. 81874429)Digital and Applied Research Platform for Diagnosis of Traditional Chinese Medicine (No. 49021003005)+1 种基金2018 Hunan Provincial Postgraduate Research Innovation Project (No. CX2018B465)Excellent Youth Project of Hunan Education Department in 2018 (No. 18B241)
文摘Objective Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods The first step was to build a text mining and analysis environment based on Python language, and built a corpus based on the core chapters of SESD. The second step was to digitalize the corpus. The main steps included word segmentation, information cleaning and merging, document-entry matrix, dictionary compilation and information conversion. The third step was to mine and display the internal information of SESD corpus by means of word cloud, keyword extraction and visualization. Results NLP played a positive role in computer recognition and comprehension of SESD. Different chapters had different keywords and weights. Deficiency syndrome elements were an important component of SESD, such as "Qi deficiency""Yang deficiency" and "Yin deficiency". The important syndrome elements of substantiality included "Blood stasis""Qi stagnation", etc. Core syndrome elements were closely related. Conclusions Syndrome differentiation and treatment was the core of SESD. Using NLP to excavate syndromes differentiation could help reveal the internal relationship between syndromes differentiation and provide basis for artificial intelligence to learn syndromes differentiation.
文摘Artificial intelligence and machine-learning are widely applied in all domain applications,including computer vision and natural language processing(NLP).We briefly discuss the development of edge detection,which plays an important role in representing the salience features in a wide range of computer vision applications.Meanwhile,transformer-based deep models facilitate the usage of NLP application.We introduce two ongoing research projects for pharmaceutical industry and business negotiation.We also selected five papers in the related areas for this journal issue.
文摘Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media.For instance,using natural language processing(NLP)methods,social media can be leveraged to obtain crucial information on the present situation during disasters.In this work,tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model.This investigation employed sentiment analysis(SA)to determine the people’s expressed negative attitudes regarding the disaster.We apply a machine learning algorithm and evaluate the performance using the standard metrics,namely root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE).Our random forest(RF)classifier outperforms comparable works with an accuracy of 98.10%.In order to gain a competitive edge,the study shows how Twitter(now X)data and machine learning(ML)techniques can analyze public discourse and sentiments regarding disasters.It does this by comparing positive and negative comments in order to develop strategies to deal with public sentiments on disasters.
文摘The traditional strategy of 3D model reconstruction mainly concentrates on orthographic projections or engineering drawings. But there are some shortcomings. Such as, only few kinds of solids can be reconstructed, the high complexity of time and less information about the 3D model. The research is extended and process card is treated as part of the 3D reconstruction. A set of process data is a superset of 2D engineering drawings set. The set comprises process drawings and process steps, and shows a sequencing and asymptotic course that a part is made from roughcast blank to final product. According to these characteristics, the object to be reconstructed is translated from the complicated engineering drawings into a series of much simpler process drawings. With the plentiful process information added for reconstruction, the disturbances such as irrelevant graph, symbol and label, etc. can be avoided. And more, the form change of both neighbor process drawings is so little that the engineering drawings interpretation has no difficulty; in addition, the abnormal solution and multi-solution can be avoided during reconstruction, and the problems of being applicable to more objects is solved ultimately. Therefore, the utility method for 3D reconstruction model will be possible. On the other hand, the feature information in process cards is provided for reconstruction model. Focusing on process cards, the feasibility and requirements of Working Procedure Model reconstruction is analyzed, and the method to apply and implement the Natural Language Understanding into the 3D reconstruction is studied. The method of asymptotic approximation product was proposed, by which a 3D process model can be constructed automatically and intelligently. The process model not only includes the information about parts characters, but also can deliver the information of design, process and engineering to the downstream applications.
文摘With the exponential growth in data processing capabilities and the progressive intertwining of medicine with industry,artificial intelligence(AI)has gained widespread application in the medical domain.Currently,AI is extensively utilized across various aspects of trauma orthopedics,including fracture identification,diagnosis and stratification,prevention strategies for falls and fractures,emergency management,and perioperative and prognostic risk assessments.This study delves into the research progress and challenges of AI in orthopedic trauma,including the clinical applications of machine learning,deep learning,and natural language processing.By illuminating these dynamic research avenues,this study aimed to catalyze interdisciplinary collaboration and spur innovation at the intersection of AI and orthopedic trauma,ultimately advancing the frontiers of patient care and clinical practice.
文摘自然语言到结构化查询语言(natural language to structured query language,NL2SQL)任务旨在将自然语言询问转化为数据库可执行的结构化查询语言(structured query language,SQL)语句。本文提出了一种辅助任务增强的中文跨域NL2SQL算法,其核心思想是通过在解码阶段添加辅助任务以结合原始模型来进行多任务训练,提升模型的准确率。辅助任务的设计是通过将数据库模式建模成图,预测自然语言询问与数据库模式图中的节点的依赖关系,显式地建模自然语言询问和数据库模式之间的依赖关系。针对特定的自然语言询问,通过辅助任务的提升,模型能够更好地识别数据库模式中哪些表/列对预测目标SQL更有效。在中文NL2SQL数据集DuSQL上的实验结果表明,添加辅助任务后的算法相对于原始模型取得了更好的效果,能够更好地处理跨域NL2SQL任务。
文摘近年来,大语言模型(large language model,LLM)在一系列下游任务中得到了广泛应用,并在多个领域表现出了卓越的文本理解、生成与推理能力.然而,越狱攻击正成为大语言模型的新兴威胁.越狱攻击能够绕过大语言模型的安全机制,削弱价值观对齐的影响,诱使经过对齐的大语言模型产生有害输出.越狱攻击带来的滥用、劫持、泄露等问题已对基于大语言模型的对话系统与应用程序造成了严重威胁.对近年的越狱攻击研究进行了系统梳理,并基于攻击原理将其分为基于人工设计的攻击、基于模型生成的攻击与基于对抗性优化的攻击3类.详细总结了相关研究的基本原理、实施方法与研究结论,全面回顾了大语言模型越狱攻击的发展历程,为后续的研究提供了有效参考.对现有的安全措施进行了简略回顾,从内部防御与外部防御2个角度介绍了能够缓解越狱攻击并提高大语言模型生成内容安全性的相关技术,并对不同方法的利弊进行了罗列与比较.在上述工作的基础上,对大语言模型越狱攻击领域的现存问题与前沿方向进行探讨,并结合多模态、模型编辑、多智能体等方向进行研究展望.