Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought conveni...Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology.展开更多
BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly...BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.展开更多
It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computin...It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computing industries,the rapid convergence of 5th generation mobile communication technology(5G)and AI is beginning to significantly transform the core communication infrastructure,network management,and vertical applications.The paper first outlined the individual roadmaps of mobile communications and AI in the early stage,with a concentration to review the era from 3rd generation mobile communication technology(3G)to 5G when AI and mobile communications started to converge.With regard to telecommunications AI,the progress of AI in the ecosystem of mobile communications was further introduced in detail,including network infrastructure,network operation and management,business operation and management,intelligent applications towards business supporting system(BSS)&operation supporting system(OSS)convergence,verticals and private networks,etc.Then the classifications of AI in telecommunication ecosystems were summarized along with its evolution paths specified by various international telecommunications standardization organizations.Towards the next decade,the prospective roadmap of telecommunications AI was forecasted.In line with 3rd generation partnership project(3GPP)and International Telecommunication Union Radiocommunication Sector(ITU-R)timeline of 5G&6th generation mobile communication technology(6G),the network intelligence following 3GPP and open radio access network(O-RAN)routes,experience and intent-based network management and operation,network AI signaling system,intelligent middle-office based BSS,intelligent customer experience management and policy control driven by BSS&OSS convergence,evolution from service level agreement(SLA)to experience level agreement(ELA),and intelligent private network for verticals were further explored.The paper is concluded with the vision that AI will reshape the future beyond 5G(B5G)/6G landscape,and we need pivot our research and development(R&D),standardizations,and ecosystem to fully take the unprecedented opportunities.展开更多
Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns i...Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns is a usefulway to impove spectrum efficiency and it is significative forartificial intelligence to be applied in this field.展开更多
The application of the artificial intelligence(AI) technology in the 5 th generation mobile communication system(5 G) networks promotes the development of the mobile communication network and its application in vertic...The application of the artificial intelligence(AI) technology in the 5 th generation mobile communication system(5 G) networks promotes the development of the mobile communication network and its application in vertical industries, however, the application models of "patching" and "plug-in" have hindered the effect of AI applications. Meanwhile, the application of AI in all walks of life puts forward requirements for new capabilities of the future network, such as distributed training, real-time collaborative inference, local data processing, etc., which require "native intelligence design" in future networks. This paper discusses the requirements of native intelligence in the 6 th generation mobile communication system(6 G) networks from the perspectives of 5 G intelligent network challenges and the "ubiquitous intelligence" vision of 6 G, and analyzes the technical challenges of the AI workflows in its lifecycle and the AI as a service(AIaaS) in cloud network. The progress and deficiencies of the current research on AI functional architecture in various industry organizations are summarized. The end-to-end functional architecture for native AI for 6 G network and its three key technical characteristics are proposed: quality of AI services(QoAIS) based AI service orchestration for its full lifecycle, deep integration of native AI computing and communication, and integration of native AI and digital twin network. The directions of future research are also prospected.展开更多
The convergence of Internet of Things(IoT),vehicularad hoc network(VANET),and mobile ad hoc network relies on sensor networks to gather data from nodes or objects.These networks involve nodes,gateways,and anchors,oper...The convergence of Internet of Things(IoT),vehicularad hoc network(VANET),and mobile ad hoc network relies on sensor networks to gather data from nodes or objects.These networks involve nodes,gateways,and anchors,operating on limited battery power,mainly used in broadcasting.IoT applications,like healthcare,smart cities,and transportation,often need position data and face challenges in delay sensitivity.Localisation is important in ITS and VANETs,influencing autonomous vehicles,collision warning systems,and road information dissemination.A robust localisation system,often combining GPS with techniques like Dead Reckoning and Image/Video Localisation,is essential for accuracy and security.Artificial intelligence(AI)integration,particularly in machine learning,enhances indoor wireless localisation effectiveness.Advancements in wireless communication(WSN,IoT,and massive MIMO)transform dense environments into programmable entities,but pose challenges in aligning self‐learning AI with sensor tech for accuracy and budget considerations.We seek original research on sensor localisation,fusion,protocols,and positioning algorithms,inviting contributions from industry and academia to address these evolving challenges.展开更多
As one of the critical technologies for the 6 th generation mobile communication system(6 G) mobile communication systems, artificial intelligence(AI) technology will provide complete automation for connecting the vir...As one of the critical technologies for the 6 th generation mobile communication system(6 G) mobile communication systems, artificial intelligence(AI) technology will provide complete automation for connecting the virtual and physical worlds. In order to construct the future ubiquitous intelligent network, people are beginning to rethink how mobile communication systems transmit and exploit intelligent information. This paper proposes a new communication paradigm, called the Intellicise communication system: model-driven semantic communication. Intellicise communication system is built on top of the traditional communication system and innovatively adds a new feature dimension on top of the traditional source coding, which enables the communication system to evolve from the traditional transmission of bit to the transmission of "model". Like the semantic base(Seb) for semantic communication, the model is considered as the new feature obtained from the joint source-channel coding. The sink node can re-construct the original signal based on the received model and the encoded sequence. In addition, the performance evaluation metrics and the implementation details of the Intellicise communication system are discussed in this paper. Finally, preliminary results of model-driven image transmission in the Intellicise communication system are presented.展开更多
In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of...In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of automatic and accurate beamforming assisted by AI will become more prominent.In existing network,servers are“patched”to network equipment to act as a centralized brain for model training and inference leading to high transmission overhead,large inference latency and potential risks of data security.Decentralized architectures have been proposed to achieve flexible parameter configuration and fast local response,but it is inefficient in collecting and sharing global information among base stations.In this paper,we propose a novel solution based on a collaborative cloud edge architecture for multi-cell joint beamforming optimization.We analyze the performance and costs of the proposed solution with two other architectural solutions by simulation.Compared with the centralized solution,our solution improves prediction accuracy by 24.66%,and reduces storage cost by 83.82%.Compared with the decentralized solution,our solution improves prediction accuracy by 68.26%,and improves coverage performance by 0.4 dB.At last,the future research work is prospected.展开更多
文摘Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology.
基金Sanming Project of Medicine in Shenzhen(No.SZSM201911007)Shenzhen Stability Support Plan(20200824145152001)。
文摘BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.
文摘It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computing industries,the rapid convergence of 5th generation mobile communication technology(5G)and AI is beginning to significantly transform the core communication infrastructure,network management,and vertical applications.The paper first outlined the individual roadmaps of mobile communications and AI in the early stage,with a concentration to review the era from 3rd generation mobile communication technology(3G)to 5G when AI and mobile communications started to converge.With regard to telecommunications AI,the progress of AI in the ecosystem of mobile communications was further introduced in detail,including network infrastructure,network operation and management,business operation and management,intelligent applications towards business supporting system(BSS)&operation supporting system(OSS)convergence,verticals and private networks,etc.Then the classifications of AI in telecommunication ecosystems were summarized along with its evolution paths specified by various international telecommunications standardization organizations.Towards the next decade,the prospective roadmap of telecommunications AI was forecasted.In line with 3rd generation partnership project(3GPP)and International Telecommunication Union Radiocommunication Sector(ITU-R)timeline of 5G&6th generation mobile communication technology(6G),the network intelligence following 3GPP and open radio access network(O-RAN)routes,experience and intent-based network management and operation,network AI signaling system,intelligent middle-office based BSS,intelligent customer experience management and policy control driven by BSS&OSS convergence,evolution from service level agreement(SLA)to experience level agreement(ELA),and intelligent private network for verticals were further explored.The paper is concluded with the vision that AI will reshape the future beyond 5G(B5G)/6G landscape,and we need pivot our research and development(R&D),standardizations,and ecosystem to fully take the unprecedented opportunities.
文摘Some frequency reuse irregular patterns in radionetwork design are proposed,the characteristic and applica-tion measures of these patterns are analyzed.Then this paperaccounts that frequency reuse irregular patterns is a usefulway to impove spectrum efficiency and it is significative forartificial intelligence to be applied in this field.
基金supported by the National Key R&D Program of China (2020YFB1806800)。
文摘The application of the artificial intelligence(AI) technology in the 5 th generation mobile communication system(5 G) networks promotes the development of the mobile communication network and its application in vertical industries, however, the application models of "patching" and "plug-in" have hindered the effect of AI applications. Meanwhile, the application of AI in all walks of life puts forward requirements for new capabilities of the future network, such as distributed training, real-time collaborative inference, local data processing, etc., which require "native intelligence design" in future networks. This paper discusses the requirements of native intelligence in the 6 th generation mobile communication system(6 G) networks from the perspectives of 5 G intelligent network challenges and the "ubiquitous intelligence" vision of 6 G, and analyzes the technical challenges of the AI workflows in its lifecycle and the AI as a service(AIaaS) in cloud network. The progress and deficiencies of the current research on AI functional architecture in various industry organizations are summarized. The end-to-end functional architecture for native AI for 6 G network and its three key technical characteristics are proposed: quality of AI services(QoAIS) based AI service orchestration for its full lifecycle, deep integration of native AI computing and communication, and integration of native AI and digital twin network. The directions of future research are also prospected.
文摘The convergence of Internet of Things(IoT),vehicularad hoc network(VANET),and mobile ad hoc network relies on sensor networks to gather data from nodes or objects.These networks involve nodes,gateways,and anchors,operating on limited battery power,mainly used in broadcasting.IoT applications,like healthcare,smart cities,and transportation,often need position data and face challenges in delay sensitivity.Localisation is important in ITS and VANETs,influencing autonomous vehicles,collision warning systems,and road information dissemination.A robust localisation system,often combining GPS with techniques like Dead Reckoning and Image/Video Localisation,is essential for accuracy and security.Artificial intelligence(AI)integration,particularly in machine learning,enhances indoor wireless localisation effectiveness.Advancements in wireless communication(WSN,IoT,and massive MIMO)transform dense environments into programmable entities,but pose challenges in aligning self‐learning AI with sensor tech for accuracy and budget considerations.We seek original research on sensor localisation,fusion,protocols,and positioning algorithms,inviting contributions from industry and academia to address these evolving challenges.
基金supported by the National Natural Science Foundation of China (61871045)。
文摘As one of the critical technologies for the 6 th generation mobile communication system(6 G) mobile communication systems, artificial intelligence(AI) technology will provide complete automation for connecting the virtual and physical worlds. In order to construct the future ubiquitous intelligent network, people are beginning to rethink how mobile communication systems transmit and exploit intelligent information. This paper proposes a new communication paradigm, called the Intellicise communication system: model-driven semantic communication. Intellicise communication system is built on top of the traditional communication system and innovatively adds a new feature dimension on top of the traditional source coding, which enables the communication system to evolve from the traditional transmission of bit to the transmission of "model". Like the semantic base(Seb) for semantic communication, the model is considered as the new feature obtained from the joint source-channel coding. The sink node can re-construct the original signal based on the received model and the encoded sequence. In addition, the performance evaluation metrics and the implementation details of the Intellicise communication system are discussed in this paper. Finally, preliminary results of model-driven image transmission in the Intellicise communication system are presented.
基金supported by the National Key Research and Development Program of China(2020YFB1806800)funded by Beijing University of Posts and Telecommuns(BUPT)China Mobile Research Institute Joint Innoviation Center。
文摘In 5G networks,optimization of antenna beam weights of base stations has become the key application of AI for network optimization.For 6G,higher frequency bands and much denser cells are expected,and the importance of automatic and accurate beamforming assisted by AI will become more prominent.In existing network,servers are“patched”to network equipment to act as a centralized brain for model training and inference leading to high transmission overhead,large inference latency and potential risks of data security.Decentralized architectures have been proposed to achieve flexible parameter configuration and fast local response,but it is inefficient in collecting and sharing global information among base stations.In this paper,we propose a novel solution based on a collaborative cloud edge architecture for multi-cell joint beamforming optimization.We analyze the performance and costs of the proposed solution with two other architectural solutions by simulation.Compared with the centralized solution,our solution improves prediction accuracy by 24.66%,and reduces storage cost by 83.82%.Compared with the decentralized solution,our solution improves prediction accuracy by 68.26%,and improves coverage performance by 0.4 dB.At last,the future research work is prospected.