This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results...This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.展开更多
Leaf population chlorophyll content in a population of crops, if obtained in a timely manner, served as a key indicator for growth management and diseases diagnosis. In this paper, a three-layer multilayer perceptron ...Leaf population chlorophyll content in a population of crops, if obtained in a timely manner, served as a key indicator for growth management and diseases diagnosis. In this paper, a three-layer multilayer perceptron (MLP) artificial neural network (ANN) based prediction system was presented for predicting the leaf population chlorophyll content from the cotton plant images. As the training of this prediction system relied heavily on how well those leaf green pixels were separated from background noises in cotton plant images, a global thresholding algorithm and an omnidirectional scan noise filtering coupled with the hue histogram statistic method were designed for leaf green pixel extraction. With the obtained leaf green pixels, the system training was carried out by applying a back propagation algorithm. The proposed system was tested to predict the chlorophyll content from the cotton plant images. The results using the proposed system were in sound agreement with those obtained by the destructive method. The average prediction relative error for the chlorophyll density (μg cm^-2) in the 17 testing images was 8.41%.展开更多
This research investigates the capability of artificial neural networks to predict vertical total electron content(VTEC)over central Anatolia in Turkey.The VTEC dataset was derived from the 19 permanent Global Positio...This research investigates the capability of artificial neural networks to predict vertical total electron content(VTEC)over central Anatolia in Turkey.The VTEC dataset was derived from the 19 permanent Global Positioning System(GPS)stations belonging to the Turkish National Permanent GPS NetworkActive(TUSAGA-Aktif)and International Global Navigation Satellite System Service(IGS)networks.The study area is located at 32.6°E-37.5°E and 36.0°N-42.0°N.Considering the factors inducing VTEC variations in the ionosphere,an artificial neural network(NN)with seven input neurons in a multi-layer perceptron model is proposed.The KURU and ANMU GPS stations from the TUSAGA-Aktif network are selected to implement the proposed neural network model.Based on the root mean square error(RMSE)results from 50 simulation tests,the hidden layer in the NN model is designed with 41 neurons since the lowest RMSE is achieved in this attempt.According to the correlation coefficients,absolute and relative errors,the NN VTEC provides better predictions for hourly and quarterly GPS VTEC.In addition,this paper demonstrates that the NN VTEC model shows better performance than the global IRI2016 model.Regarding the spatial contribution of the GPS network to TEC prediction,the KURU station performs better than ANMU station in fitting with the proposed NN model in the station-based comparison.展开更多
Recommendation-aware Content Caching(RCC)at the edge enables a significant reduction of the network latency and the backhaul load,thereby invigorating ubiquitous latency-sensitive innovative services.However,the effec...Recommendation-aware Content Caching(RCC)at the edge enables a significant reduction of the network latency and the backhaul load,thereby invigorating ubiquitous latency-sensitive innovative services.However,the effectiveness of RCC strategies is highly dependent on explicit information as regards subscribers’content request patterns,the sophisticated caching placement policy,and the personalized recommendation tactics.In this article,we investigate how the potentials of Artificial Intelligence(AI)and optimization techniques can be harnessed to address those core issues and facilitate the full implementation of RCC for the upcoming intelligent 6G era.Towards this end,we first elaborate on the hierarchical RCC network architecture.Then,the devised AI and optimization empowered paradigm is introduced,whereas AI and optimization techniques are leveraged to predict the users’content preferences in real-time situations with the assistance of their historical behavior data and determine the cache pushing and recommendation decision,respectively.Through extensive case studies,we validate the effectiveness of AI-based predictors in estimating users’content preference and the superiority of optimized RCC policies over the conventional benchmarks.At last,we shed light on the opportunities and challenges in the future.展开更多
Artificial intelligence generated content(AIGC)has been a research hotspot in the field of artificial intelligence in recent years.It is expected to replace humans in performing some of the work of content generation ...Artificial intelligence generated content(AIGC)has been a research hotspot in the field of artificial intelligence in recent years.It is expected to replace humans in performing some of the work of content generation at a low cost and a high volume,such as music,painting,multimodal content generation,news articles,summary reports,stock commentary summaries,and even content and digital people generated in the meta-universe.AIGC provides a new technical path for the development and implementation of AI in the future.展开更多
Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of...Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of green sand and transmission line theory,a method for rapidly measuring the moisture content of green sand by means of a low frequency multiprobe detector was proposed.A system was constructed,where six detectors with different arrangements and probes were designed.The experimental results showed that the voltage difference of transmission line increases with the increasing frequency before 29 MHz while decreases after 35 MHz.A voltage difference platform occurs in the range of 29-35 MHz,which is suitable for measuring the moisture content due to its insensitivity to frequency.The electric field intensity gradually decreases with the increase of the probe depth,and the intensity of central probe is always greater than that of the edge probe.When the distance of the probe away from the sand sample surface is 80 mm,the electric field intensity of the edge probe is found to be very weak.The optimal excitation frequency for measuring the moisture content of green sand is 29-33 MHz.The optimal detector is the one with one center probe and three edge probes,and their lengths are 80 mm and 60 mm,respectively.The distance between the center and edge probes is 25 mm,and the diameter of probes is 5 mm.Taking the voltage difference of transmission line,bentonite content,coal powder content and compactability as parameters of the input layer,and the moisture content as a parameter of the output layer,a three-layer BP artificial neural network model for predicting the moisture content of green sand was constructed according to the experimental results at 33 MHz.The prediction error of the model is not higher than 3.3% when the moisture content of green sand is within the range of 3wt.%-7wt.%.展开更多
目的对人工智能在设计领域的应用进行梳理与总结,分析当下人工智能对设计流程和设计师的影响,展望未来人工智能对设计行业的影响趋势。方法使用VOSviewer工具和文献计量法对Web of Science数据库中关于“人工智能在设计领域的创新与应...目的对人工智能在设计领域的应用进行梳理与总结,分析当下人工智能对设计流程和设计师的影响,展望未来人工智能对设计行业的影响趋势。方法使用VOSviewer工具和文献计量法对Web of Science数据库中关于“人工智能在设计领域的创新与应用”的文献进行详细的可视化和聚类分析,深入探讨文献中的核心观点和案例。结果基于四个主要聚类(AI+技术应用、AI+设计流程、AI+创意协作、AI+影响反思)来展开讨论。特别关注生成式人工智能(AIGC)技术对设计方法和设计流程的影响,指出生成式人工智能在促进设计创新和提升设计效率方面发挥着至关重要的作用。此外,生成式人工智能对设计师的传统角色及设计原创性提出了新的挑战并重新定义需求。预测未来人工智能将进一步整合进设计流程,促进设计创新,更加关注人工智能的原创性、责任边界问题,探讨人工智能与设计师合作的新模式。结论通过对人工智能在设计领域应用的全面综述,为未来设计创新与人工智能融合提供了有价值的理论参考和发展方向。展开更多
文摘This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination.
基金supported by the Chinese Scholarship Council (CSC) and the Minzu University of China(CUN0246)
文摘Leaf population chlorophyll content in a population of crops, if obtained in a timely manner, served as a key indicator for growth management and diseases diagnosis. In this paper, a three-layer multilayer perceptron (MLP) artificial neural network (ANN) based prediction system was presented for predicting the leaf population chlorophyll content from the cotton plant images. As the training of this prediction system relied heavily on how well those leaf green pixels were separated from background noises in cotton plant images, a global thresholding algorithm and an omnidirectional scan noise filtering coupled with the hue histogram statistic method were designed for leaf green pixel extraction. With the obtained leaf green pixels, the system training was carried out by applying a back propagation algorithm. The proposed system was tested to predict the chlorophyll content from the cotton plant images. The results using the proposed system were in sound agreement with those obtained by the destructive method. The average prediction relative error for the chlorophyll density (μg cm^-2) in the 17 testing images was 8.41%.
文摘This research investigates the capability of artificial neural networks to predict vertical total electron content(VTEC)over central Anatolia in Turkey.The VTEC dataset was derived from the 19 permanent Global Positioning System(GPS)stations belonging to the Turkish National Permanent GPS NetworkActive(TUSAGA-Aktif)and International Global Navigation Satellite System Service(IGS)networks.The study area is located at 32.6°E-37.5°E and 36.0°N-42.0°N.Considering the factors inducing VTEC variations in the ionosphere,an artificial neural network(NN)with seven input neurons in a multi-layer perceptron model is proposed.The KURU and ANMU GPS stations from the TUSAGA-Aktif network are selected to implement the proposed neural network model.Based on the root mean square error(RMSE)results from 50 simulation tests,the hidden layer in the NN model is designed with 41 neurons since the lowest RMSE is achieved in this attempt.According to the correlation coefficients,absolute and relative errors,the NN VTEC provides better predictions for hourly and quarterly GPS VTEC.In addition,this paper demonstrates that the NN VTEC model shows better performance than the global IRI2016 model.Regarding the spatial contribution of the GPS network to TEC prediction,the KURU station performs better than ANMU station in fitting with the proposed NN model in the station-based comparison.
基金This work was supported in part by the MOE ARF Tier 2 under Grant MOE2015-T2-2-104the Singapore University of Technology and Design-Zhejiang University(SUTD-ZJU)Research Collaboration under Grant SUTD-ZJU/RES/01/2016and the SUTD-ZJU Research Collaboration under Grant SUTD-ZJU/RES/05/2016.
文摘Recommendation-aware Content Caching(RCC)at the edge enables a significant reduction of the network latency and the backhaul load,thereby invigorating ubiquitous latency-sensitive innovative services.However,the effectiveness of RCC strategies is highly dependent on explicit information as regards subscribers’content request patterns,the sophisticated caching placement policy,and the personalized recommendation tactics.In this article,we investigate how the potentials of Artificial Intelligence(AI)and optimization techniques can be harnessed to address those core issues and facilitate the full implementation of RCC for the upcoming intelligent 6G era.Towards this end,we first elaborate on the hierarchical RCC network architecture.Then,the devised AI and optimization empowered paradigm is introduced,whereas AI and optimization techniques are leveraged to predict the users’content preferences in real-time situations with the assistance of their historical behavior data and determine the cache pushing and recommendation decision,respectively.Through extensive case studies,we validate the effectiveness of AI-based predictors in estimating users’content preference and the superiority of optimized RCC policies over the conventional benchmarks.At last,we shed light on the opportunities and challenges in the future.
文摘Artificial intelligence generated content(AIGC)has been a research hotspot in the field of artificial intelligence in recent years.It is expected to replace humans in performing some of the work of content generation at a low cost and a high volume,such as music,painting,multimodal content generation,news articles,summary reports,stock commentary summaries,and even content and digital people generated in the meta-universe.AIGC provides a new technical path for the development and implementation of AI in the future.
基金financially supported by the National Natural Science Foundation of China (Grant No.51975165)。
文摘Green sand is a mixture of silica sand,bentonite,water and coal powder,and other additives.Moisture content is an important index to characterize the properties of green sand.Based on the dielectric characteristics of green sand and transmission line theory,a method for rapidly measuring the moisture content of green sand by means of a low frequency multiprobe detector was proposed.A system was constructed,where six detectors with different arrangements and probes were designed.The experimental results showed that the voltage difference of transmission line increases with the increasing frequency before 29 MHz while decreases after 35 MHz.A voltage difference platform occurs in the range of 29-35 MHz,which is suitable for measuring the moisture content due to its insensitivity to frequency.The electric field intensity gradually decreases with the increase of the probe depth,and the intensity of central probe is always greater than that of the edge probe.When the distance of the probe away from the sand sample surface is 80 mm,the electric field intensity of the edge probe is found to be very weak.The optimal excitation frequency for measuring the moisture content of green sand is 29-33 MHz.The optimal detector is the one with one center probe and three edge probes,and their lengths are 80 mm and 60 mm,respectively.The distance between the center and edge probes is 25 mm,and the diameter of probes is 5 mm.Taking the voltage difference of transmission line,bentonite content,coal powder content and compactability as parameters of the input layer,and the moisture content as a parameter of the output layer,a three-layer BP artificial neural network model for predicting the moisture content of green sand was constructed according to the experimental results at 33 MHz.The prediction error of the model is not higher than 3.3% when the moisture content of green sand is within the range of 3wt.%-7wt.%.
文摘目的对人工智能在设计领域的应用进行梳理与总结,分析当下人工智能对设计流程和设计师的影响,展望未来人工智能对设计行业的影响趋势。方法使用VOSviewer工具和文献计量法对Web of Science数据库中关于“人工智能在设计领域的创新与应用”的文献进行详细的可视化和聚类分析,深入探讨文献中的核心观点和案例。结果基于四个主要聚类(AI+技术应用、AI+设计流程、AI+创意协作、AI+影响反思)来展开讨论。特别关注生成式人工智能(AIGC)技术对设计方法和设计流程的影响,指出生成式人工智能在促进设计创新和提升设计效率方面发挥着至关重要的作用。此外,生成式人工智能对设计师的传统角色及设计原创性提出了新的挑战并重新定义需求。预测未来人工智能将进一步整合进设计流程,促进设计创新,更加关注人工智能的原创性、责任边界问题,探讨人工智能与设计师合作的新模式。结论通过对人工智能在设计领域应用的全面综述,为未来设计创新与人工智能融合提供了有价值的理论参考和发展方向。