An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ...An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%.展开更多
Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern const...Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern construction as well. However, ignimbrites are particularly vulnerable to atmospheric conditions, such as freeze-thaw cycles, due to their high porosity, which is a result of their formation process. When water enters the pores of the ignimbrites, it can freeze during cold weather. As the water freezes and expands, it generates internal stress within the stone, causing micro-cracks to develop. Over time, repeated freeze-thaw (F-T) cycles lead to the growth of these micro-cracks into larger cracks, compromising the structural integrity of the ignimbrites and eventually making them unsuitable for use as building materials. The determination of the long-term F-T performance of ignimbrites can be established after long F-T experimental processes. Determining the long-term F-T performance of ignimbrites typically requires extensive experimental testing over prolonged freeze-thaw cycles. To streamline this process, developing accurate predictive equations becomes crucial. In this study, such equations were formulated using classical regression analyses and artificial neural networks (ANN) based on data obtained from these experiments, allowing for the prediction of the F-T performance of ignimbrites and other similar building stones without the need for lengthy testing. In this study, uniaxial compressive strength, ultrasonic propagation velocity, apparent porosity and mass loss of ignimbrites after long-term F-T were determined. Following the F-T cycles, the disintegration rate was evaluated using decay function approaches, while uniaxial compressive strength (UCS) values were predicted with minimal input parameters through both regression and ANN analyses. The ANN and regression models created for this purpose were first started with a single input value and then developed with two and three combinations. The predictive performance of the models was assessed by comparing them to regression models using the coefficient of determination (R2) as the evaluation criterion. As a result of the study, higher R2 values (0.87) were obtained in models built with artificial neural network. The results of the study indicate that ANN usage can produce results close to experimental outcomes in predicting the long-term F-T performance of ignimbrite samples.展开更多
Wind turbines have emerged as a prominent renewable energy source globally.Efficient monitoring and detection methods are crucial to enhance their operational effectiveness,particularly in identifying fatigue-related ...Wind turbines have emerged as a prominent renewable energy source globally.Efficient monitoring and detection methods are crucial to enhance their operational effectiveness,particularly in identifying fatigue-related issues.This review focuses on leveraging artificial neural networks(ANNs)for wind turbine monitoring and fatigue detection,aiming to provide a valuable reference for researchers in this domain and related areas.Employing various ANN techniques,including General Regression Neural Network(GRNN),Support Vector Machine(SVM),Cuckoo Search Neural Network(CSNN),Backpropagation Neural Network(BPNN),Particle Swarm Optimization Artificial Neural Network(PSO-ANN),Convolutional Neural Network(CNN),and nonlinear autoregressive networks with exogenous inputs(NARX),we investigate the impact of average wind speed on stress transfer function and fatigue damage in wind turbine structures.Our findings indicate significant precision levels exhibited by GRNN and SVM,making them suitable for practical implementation.CSNN demonstrates superiority over BPNN and PSO-ANN in predicting blade fatigue life,showcasing enhanced accuracy,computational speed,precision,and convergence rate towards the global minimum.Furthermore,CNN and NARX models display exceptional accuracy in classification tasks.These results underscore the potential of ANNs in addressing challenges in wind turbine monitoring and fatigue detection.However,it’s important to acknowledge limitations such as data availability and model complexity.Future research should explore integrating real-time data and advanced optimization techniques to improve prediction accuracy and applicability in real-world scenarios.In summary,this review contributes to advancing the understanding of ANNs’efficacy in wind turbine monitoring and fatigue detection,offering insights and methodologies that can inform future research and practical applications in renewable energy systems.展开更多
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif...A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy.展开更多
Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structure...Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands.展开更多
Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supp...Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supply chains intensifies day by day,companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits.Excessive inventory(overstock)and stock outs are very significant issues for suppliers.Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory.Excess inventory can also lead to increased storage,insurance costs and labor as well as lower and degraded quality based on the nature of the product.Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store.If clients are unable to find the right products on the shelves,they may switch to another vendor or purchase alternative items.Demand forecasting is valuable for planning,scheduling and improving the coordination of all supply chain activities.This paper discusses the use of neural networks for seasonal time series forecasting.Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast.展开更多
The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron ...The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a...Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.展开更多
An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leach...An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters.展开更多
Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathem...Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathematical methods, regression analysis and Artificial Neural Networks (ANNs), were used to predict the uniaxial compressive strength and modulus of elasticity. The P-wave velocity, the point load index, the Schmidt hammer rebound number and porosity were used as inputs for both meth-ods. The regression equations show that the relationship between P-wave velocity, point load index, Schmidt hammer rebound number and the porosity input sets with uniaxial compressive strength and modulus of elasticity under conditions of linear rela-tions obtained coefficients of determination of (R2) of 0.64 and 0.56, respectively. ANNs were used to improve the regression re-sults. The generalized regression and feed forward neural networks with two outputs (UCS and E) improved the coefficients of determination to more acceptable levels of 0.86 and 0.92 for UCS and to 0.77 and 0.82 for E. The results show that the proposed ANN methods could be applied as a new acceptable method for the prediction of uniaxial compressive strength and modulus of elasticity of intact rocks.展开更多
Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of thi...Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.展开更多
The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An eff...The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.展开更多
High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an ef...High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.展开更多
In this paper, a back propagation artificial neural network (BP-ANN) model is presented for the simultaneous estimation of vapour liquid equilibria (VLE) of four binary systems viz chlorodifluoromethan-carbondioxi...In this paper, a back propagation artificial neural network (BP-ANN) model is presented for the simultaneous estimation of vapour liquid equilibria (VLE) of four binary systems viz chlorodifluoromethan-carbondioxide, trifluoromethan-carbondioxide, carbondisulfied-trifluoromethan and carbondisulfied-chlorodifluoromethan. VLE data of the systems were taken from the literature for wide ranges of temperature (222.04-343.23K) and pressure (0.105 to 7.46MPa). BP-ANN trained by the Levenberg-Marquardt algorithm in the MATLAB neural network toolbox was used for building and optimizing the model. It is shown that the established model could estimate the VLE with satisfactory precision and accuracy for the four systems with the root mean square error in the range of 0.054-0.119. Predictions using BP-ANN were compared with the conventional Redlich-Kwang-Soave (RKS) equation of state, suggesting that BP-ANN has better ability in estimation as compared with the RKS equation (the root mean square error in the range of 0.115-0.1546).展开更多
Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the appli...Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the application of an Artificial Neural Network(ANN) technique for modeling the penetration rate of tunnel boring machines.A database,including actual,measured TBM penetration rates,uniaxial compressive strengths of the rock,the distance between planes of weakness in the rock mass and rock quality designation was established.Data collected from three different TBM projects(the Queens Water Tunnel,USA,the Karaj-Tehran water transfer tunnel,Iran,and the Gilgel Gibe II hydroelectric project,Ethiopia).A five-layer ANN was found to be optimum,with an architecture of three neurons in the input layer,9,7 and 3 neurons in the first,second and third hidden layers,respectively,and one neuron in the output layer.The correlation coefficient determined for penetration rate predicted by the ANN was 0.94.展开更多
In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, ...In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-I.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.展开更多
AIM: To investigate whether ANNs and LDA could recognize patients with ABG in a database, containing only clinical and biochemical variables, of a pool of patients with and without ABG, by selecting the most predictiv...AIM: To investigate whether ANNs and LDA could recognize patients with ABG in a database, containing only clinical and biochemical variables, of a pool of patients with and without ABG, by selecting the most predictive variables and by reducing input data to the minimum.METHODS: Data was collected from 350 consecutive outpatients (263 with ABG, 87 with non-atrophic gastritis and/or celiac disease [controls]). Structured questionnaires with 22 items (anagraphic, anamnestic, clinical, and biochemical data) were filled out for each patient. All patients underwent gastroscopy with biopsies. ANNs and LDA were applied to recognize patients with ABG.Experiment 1: random selection on 37 variables, experiment 2: optimization process on 30 variables, experiment 3:input data reduction on 8 variables, experiment 4: use of only clinical input data on 5 variables, and experiment 5:use of only serological variables.RESULTS: In experiment 1, overall accuracies of ANNs and LDA were 96.6% and 94.6%, respectively, for predicting patients with ABG. In experiment 2, ANNs and LDA reached an overall accuracy of 98.8% and 96.8%,respectively. In experiment 3, overall accuracy of ANNs was 98.4%. In experiment 4, overall accuracies of ANNs and LDA were, respectively, 91.3% and 88.6%. In experiment 5, overall accuracies of ANNs and LDA were,respectively, 97.7% and 94.5%.CONCLUSION: This preliminary study suggests that advanced statistical methods, not only ANNs, but also LDA,may contribute to better address bioptic sampling during gastroscopy in a subset of patients in whom ABG may be suspected on the basis of aspecific gastrointestinal symptoms or non-digestive disorders.展开更多
Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand ...Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.展开更多
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com...A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.展开更多
基金the support of the National Natural Science Foundation of China(22278234,21776151)。
文摘An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%.
文摘Ignimbrites have been widely used as building materials in many historical and touristic structures in the Kayseri region of Türkiye. Their diverse colours and textures make them a popular choice for modern construction as well. However, ignimbrites are particularly vulnerable to atmospheric conditions, such as freeze-thaw cycles, due to their high porosity, which is a result of their formation process. When water enters the pores of the ignimbrites, it can freeze during cold weather. As the water freezes and expands, it generates internal stress within the stone, causing micro-cracks to develop. Over time, repeated freeze-thaw (F-T) cycles lead to the growth of these micro-cracks into larger cracks, compromising the structural integrity of the ignimbrites and eventually making them unsuitable for use as building materials. The determination of the long-term F-T performance of ignimbrites can be established after long F-T experimental processes. Determining the long-term F-T performance of ignimbrites typically requires extensive experimental testing over prolonged freeze-thaw cycles. To streamline this process, developing accurate predictive equations becomes crucial. In this study, such equations were formulated using classical regression analyses and artificial neural networks (ANN) based on data obtained from these experiments, allowing for the prediction of the F-T performance of ignimbrites and other similar building stones without the need for lengthy testing. In this study, uniaxial compressive strength, ultrasonic propagation velocity, apparent porosity and mass loss of ignimbrites after long-term F-T were determined. Following the F-T cycles, the disintegration rate was evaluated using decay function approaches, while uniaxial compressive strength (UCS) values were predicted with minimal input parameters through both regression and ANN analyses. The ANN and regression models created for this purpose were first started with a single input value and then developed with two and three combinations. The predictive performance of the models was assessed by comparing them to regression models using the coefficient of determination (R2) as the evaluation criterion. As a result of the study, higher R2 values (0.87) were obtained in models built with artificial neural network. The results of the study indicate that ANN usage can produce results close to experimental outcomes in predicting the long-term F-T performance of ignimbrite samples.
基金Author Aly Mousaad Aly received funding from the Louisiana Board of Regents through the Industrial Ties Research Subprogram(ITRS)(Award Number:LEQSF(2022-25)-RD-B-02)The author(Aly)also acknowledges support from the LSU Institute for Energy Innovation[Research for Energy Innovation 2023-I(Phase I)]。
文摘Wind turbines have emerged as a prominent renewable energy source globally.Efficient monitoring and detection methods are crucial to enhance their operational effectiveness,particularly in identifying fatigue-related issues.This review focuses on leveraging artificial neural networks(ANNs)for wind turbine monitoring and fatigue detection,aiming to provide a valuable reference for researchers in this domain and related areas.Employing various ANN techniques,including General Regression Neural Network(GRNN),Support Vector Machine(SVM),Cuckoo Search Neural Network(CSNN),Backpropagation Neural Network(BPNN),Particle Swarm Optimization Artificial Neural Network(PSO-ANN),Convolutional Neural Network(CNN),and nonlinear autoregressive networks with exogenous inputs(NARX),we investigate the impact of average wind speed on stress transfer function and fatigue damage in wind turbine structures.Our findings indicate significant precision levels exhibited by GRNN and SVM,making them suitable for practical implementation.CSNN demonstrates superiority over BPNN and PSO-ANN in predicting blade fatigue life,showcasing enhanced accuracy,computational speed,precision,and convergence rate towards the global minimum.Furthermore,CNN and NARX models display exceptional accuracy in classification tasks.These results underscore the potential of ANNs in addressing challenges in wind turbine monitoring and fatigue detection.However,it’s important to acknowledge limitations such as data availability and model complexity.Future research should explore integrating real-time data and advanced optimization techniques to improve prediction accuracy and applicability in real-world scenarios.In summary,this review contributes to advancing the understanding of ANNs’efficacy in wind turbine monitoring and fatigue detection,offering insights and methodologies that can inform future research and practical applications in renewable energy systems.
基金Supported by National Key R&D Program of China (018YFA0404400)National Natural Science Foundation of China (12070131001,11875075,11935003,11975031,12141501)。
文摘A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy.
基金National Natural Science Foundation of China(Nos.51577044 and 52022026).
文摘Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands.
文摘Forecasting is predicting or estimating a future event or trend.Supply chains have been constantly growing in most countries ever since the industrial revolution of the 18th century.As the competitiveness between supply chains intensifies day by day,companies are shifting their focus to predictive analytics techniques to minimize costs and boost productivity and profits.Excessive inventory(overstock)and stock outs are very significant issues for suppliers.Excessive inventory levels can lead to loss of revenue because the company's capital is tied up in excess inventory.Excess inventory can also lead to increased storage,insurance costs and labor as well as lower and degraded quality based on the nature of the product.Shortages or out of stock can lead to lost sales and a decline in customer contentment and loyalty to the store.If clients are unable to find the right products on the shelves,they may switch to another vendor or purchase alternative items.Demand forecasting is valuable for planning,scheduling and improving the coordination of all supply chain activities.This paper discusses the use of neural networks for seasonal time series forecasting.Our objective is to evaluate the contribution of the correct choice of the transfer function by proposing a new form of the transfer function to improve the quality of the forecast.
基金Project(51344004)supported by the National Natural Science Foundation of China
文摘The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy.
基金Project (2006AA06Z132) supported by High-tech Research and Development Program of ChinaProject (B604) supported by Leading Academic Discipline Project of Shanghai
文摘An artificial neural network model was developed to predict the oxidation of refractory gold concentrate (RGC) by ozone and ferric ions. The concentration of ozone and ferric ions, pulp density, oxygen amount, leaching time and temperature were employed as inputs to the network; the output of the network was the percentage of the ferric extraction iron from RGC. The multilayered feed-forward networks were trained by 33 sets of input-output patterns using a back propagation algorithm; a three-layer network with 8 neurons in the hidden layer gave optimal results. The model gave good predictions of high correlation coefficient (R2=0.966). The predictions by ANN are more accurate when compared with conventional multivariate regression analysis (MVRA). In addition, calculation with ANN model indicates that temperature is the predominant parameter and ozone concentration is the lesser influential parameter in the pre-oxidation process of refractory gold ore. The ANN neural network model accurately estimates the ferric extraction during pretreatment process of RGC in gold smelter plants and can be used to optimize the process parameters.
文摘Uniaxial Compressive Strength (UCS) and modulus of elasticity (E) are the most important rock parameters required and determined for rock mechanical studies in most civil and mining projects. In this study, two mathematical methods, regression analysis and Artificial Neural Networks (ANNs), were used to predict the uniaxial compressive strength and modulus of elasticity. The P-wave velocity, the point load index, the Schmidt hammer rebound number and porosity were used as inputs for both meth-ods. The regression equations show that the relationship between P-wave velocity, point load index, Schmidt hammer rebound number and the porosity input sets with uniaxial compressive strength and modulus of elasticity under conditions of linear rela-tions obtained coefficients of determination of (R2) of 0.64 and 0.56, respectively. ANNs were used to improve the regression re-sults. The generalized regression and feed forward neural networks with two outputs (UCS and E) improved the coefficients of determination to more acceptable levels of 0.86 and 0.92 for UCS and to 0.77 and 0.82 for E. The results show that the proposed ANN methods could be applied as a new acceptable method for the prediction of uniaxial compressive strength and modulus of elasticity of intact rocks.
基金Foundation item:Under the auspices of Shahrood University of Technology,Iran(No.348517)
文摘Soil macronutrients(i.e. nitrogen(N), phosphorus(P), and potassium(K)) are important soils components and knowing the spatial distribution of these parameters are necessary at precision agriculture. The purpose of this study was to evaluate the feasibility of different methods such as artificial neural networks(ANN) and two geostatistical methods(geographically weighted regression(GWR) and cokriging(CK)) to estimate N, P and K contents. For this purpose, soil samples were taken from topsoil(0–30 cm) at 106 points and analyzed for their chemical and physical parameters. These data were divided into calibration(n = 84) and validation(n = 22). Chemical and physical variables including clay, p H and organic carbon(OC) were used as auxiliary soil variables to estimate the N, P and K contents. Results showed that the ANN model(with coefficient of determination R^2 = 0.922 and root mean square error RMSE = 0.0079%) was more accurate compared to the CK model(with R^2 = 0.612 and RMSE = 0.0094%), and the GWR model(with R^2 = 0.872 and RMSE = 0.0089%) to estimate the N variable. The ANN model estimated the P with the RMSE of 3.630 ppm, which was respectively 28.93% and 20.00% less than the RMSE of 4.680 ppm and 4.357 ppm from the CK and GWR models. The estimated K by CK, GWR and ANN models have the RMSE of 76.794 ppm, 75.790 ppm and 52.484 ppm. Results indicated that the performance of the CK model for estimation of macro nutrients(N, P and K) was slightly lower than the GWR model. Also, the accuracy of the ANN model was higher than CK and GWR models, which proved to be more effective and reliable methods for estimating macro nutrients.
文摘The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non- linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN) perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single- layer feed-forward neural network with the back propagation algorithm is chosen as one of the well- suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken tk^r training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7'30"E and 8°48'45"N), Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES) data, and this trained network is demon- strated by the field data. Groundwater table depth also has been modeled.
文摘High-rise buildings are usually considered as flexible structures with low inherent damping. Therefore, these kinds of buildings are susceptible to wind-induced vibration. Tuned Mass Damper(TMD) can be used as an effective device to mitigate excessive vibrations. In this study, Artificial Neural Networks is used to find optimal mechanical properties of TMD for high-rise buildings subjected to wind load. The patterns obtained from structural analysis of different multi degree of freedom(MDF) systems are used for training neural networks. In order to obtain these patterns, structural models of some systems with 10 to 80 degrees-of-freedoms are built in MATLAB/SIMULINK program. Finally, the optimal properties of TMD are determined based on the objective of maximum displacement response reduction. The Auto-Regressive model is used to simulate the wind load. In this way, the uncertainties related to wind loading can be taken into account in neural network’s outputs. After training the neural network, it becomes possible to set the frequency and TMD mass ratio as inputs and get the optimal TMD frequency and damping ratio as outputs. As a case study, a benchmark 76-story office building is considered and the presented procedure is used to obtain optimal characteristics of the TMD for the building.
文摘In this paper, a back propagation artificial neural network (BP-ANN) model is presented for the simultaneous estimation of vapour liquid equilibria (VLE) of four binary systems viz chlorodifluoromethan-carbondioxide, trifluoromethan-carbondioxide, carbondisulfied-trifluoromethan and carbondisulfied-chlorodifluoromethan. VLE data of the systems were taken from the literature for wide ranges of temperature (222.04-343.23K) and pressure (0.105 to 7.46MPa). BP-ANN trained by the Levenberg-Marquardt algorithm in the MATLAB neural network toolbox was used for building and optimizing the model. It is shown that the established model could estimate the VLE with satisfactory precision and accuracy for the four systems with the root mean square error in the range of 0.054-0.119. Predictions using BP-ANN were compared with the conventional Redlich-Kwang-Soave (RKS) equation of state, suggesting that BP-ANN has better ability in estimation as compared with the RKS equation (the root mean square error in the range of 0.115-0.1546).
文摘Rate of penetration of a Tunnel Boring Machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project.This paper presents the results of a study into the application of an Artificial Neural Network(ANN) technique for modeling the penetration rate of tunnel boring machines.A database,including actual,measured TBM penetration rates,uniaxial compressive strengths of the rock,the distance between planes of weakness in the rock mass and rock quality designation was established.Data collected from three different TBM projects(the Queens Water Tunnel,USA,the Karaj-Tehran water transfer tunnel,Iran,and the Gilgel Gibe II hydroelectric project,Ethiopia).A five-layer ANN was found to be optimum,with an architecture of three neurons in the input layer,9,7 and 3 neurons in the first,second and third hidden layers,respectively,and one neuron in the output layer.The correlation coefficient determined for penetration rate predicted by the ANN was 0.94.
文摘In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-I.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.
基金Supported by a grant from Bracco Imaging Spa, Milan, Italy, and a grant from the Italian Ministry of University and Research (No. 2002-2003)
文摘AIM: To investigate whether ANNs and LDA could recognize patients with ABG in a database, containing only clinical and biochemical variables, of a pool of patients with and without ABG, by selecting the most predictive variables and by reducing input data to the minimum.METHODS: Data was collected from 350 consecutive outpatients (263 with ABG, 87 with non-atrophic gastritis and/or celiac disease [controls]). Structured questionnaires with 22 items (anagraphic, anamnestic, clinical, and biochemical data) were filled out for each patient. All patients underwent gastroscopy with biopsies. ANNs and LDA were applied to recognize patients with ABG.Experiment 1: random selection on 37 variables, experiment 2: optimization process on 30 variables, experiment 3:input data reduction on 8 variables, experiment 4: use of only clinical input data on 5 variables, and experiment 5:use of only serological variables.RESULTS: In experiment 1, overall accuracies of ANNs and LDA were 96.6% and 94.6%, respectively, for predicting patients with ABG. In experiment 2, ANNs and LDA reached an overall accuracy of 98.8% and 96.8%,respectively. In experiment 3, overall accuracy of ANNs was 98.4%. In experiment 4, overall accuracies of ANNs and LDA were, respectively, 91.3% and 88.6%. In experiment 5, overall accuracies of ANNs and LDA were,respectively, 97.7% and 94.5%.CONCLUSION: This preliminary study suggests that advanced statistical methods, not only ANNs, but also LDA,may contribute to better address bioptic sampling during gastroscopy in a subset of patients in whom ABG may be suspected on the basis of aspecific gastrointestinal symptoms or non-digestive disorders.
文摘Horizontal alignment greatly affects the speedof vehicles at rural roads. Therefore, it is necessary toanalyze and predict vehicles speed on curve sections.Numerous studies took rural two-lane as research subjectsand provided models for predicting operating speeds.However, less attention has been paid to multi-lane highwaysespecially in Egypt. In this research, field operatingspeed data of both cars and trucks on 78 curve sections offour multi-lane highways is collected. With the data, correlationbetween operating speed (V85) and alignment isanalyzed. The paper includes two separate relevant analyses.The first analysis uses the regression models toinvestigate the relationships between V85 as dependentvariable, and horizontal alignment and roadway factors asindependent variables. This analysis proposes two predictingmodels for cars and trucks. The second analysisuses the artificial neural networks (ANNs) to explore theprevious relationships. It is found that the ANN modelinggives the best prediction model. The most influential variableon V85 for cars is the radius of curve. Also, for V85 fortrucks, the most influential variable is the median width.Finally, the derived models have statistics within theacceptable regions and they are conceptually reasonable.
基金Supported by the National Natural Sciences Foundation of China (No. 50975213 and No. 50705070)Doctoral Fund for the New Teachers of Ministry of Education of China (No. 20070497029)the Program of Introducing Talents of Discipline to Universities (No. B08031)
文摘A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance.