期刊文献+
共找到157,765篇文章
< 1 2 250 >
每页显示 20 50 100
Self-supervised learning artificial intelligence noise reduction technology based on the nearest adjacent layer in ultra-low dose CT of urinary calculi
1
作者 ZHOU Cheng LIU Yang +4 位作者 QIU Yingwei HE Daijun YAN Yu LUO Min LEI Youyuan 《中国医学影像技术》 CSCD 北大核心 2024年第8期1249-1253,共5页
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho... Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT. 展开更多
关键词 urinary calculi tomography X-ray computed artificial intelligence prospective studies
下载PDF
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
2
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 artificial intelligence Emerging devices artificial sensory neurons Spiking neural networks Neuromorphic sensing
下载PDF
Single-cell pan-omics, environmental neurology, and artificial intelligence:the time for holistic brain health research
3
作者 Paolo Abondio Francesco Bruno 《Neural Regeneration Research》 SCIE CAS 2025年第6期1703-1704,共2页
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t... The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks. 展开更多
关键词 function artificial LANDSCAPE
下载PDF
Revolutionizing diabetic retinopathy screening and management:The role of artificial intelligence and machine learning
4
作者 Mona Mohamed Ibrahim Abdalla Jaiprakash Mohanraj 《World Journal of Clinical Cases》 SCIE 2025年第5期1-12,共12页
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma... Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare. 展开更多
关键词 Diabetic retinopathy artificial intelligence Machine learning SCREENING MANAGEMENT Predictive analytics Personalized medicine
下载PDF
Recognition and quality mapping of traditional herbal drugs:way forward towards artificial intelligence
5
作者 Sanyam Sharma Subh Naman Ashish Baldi 《Traditional Medicine Research》 2025年第1期12-26,共15页
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident... The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods. 展开更多
关键词 artificial intelligence AYURVEDA machine learning models herbal drugs image pre-processing medicinal plants
下载PDF
Gallbladder carcinoma in the era of artificial intelligence: Early diagnosis for better treatment
6
作者 Ismail AS Burud Sherreen Elhariri Nabil Eid 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期256-259,共4页
Gallbladder carcinoma(GBC)is the most common malignant tumor of biliary tract,with poor prognosis due to its aggressive nature and limited therapeutic options.Early detection of GBC is a major challenge,with most GBCs... Gallbladder carcinoma(GBC)is the most common malignant tumor of biliary tract,with poor prognosis due to its aggressive nature and limited therapeutic options.Early detection of GBC is a major challenge,with most GBCs being detected accidentally during cholecystectomy procedures for gallbladder stones.This letter comments on the recent article by Deqing et al in the World Journal of Gastrointestinal Oncology,which summarized the various current methods used in early diagnosis of GBC,including endoscopic ultrasound(EUS)examination of the gallbladder for high-risk GBC patients,and the use of EUS-guided elasto-graphy,contrast-enhanced EUS,trans-papillary biopsy,natural orifice translu-minal endoscopic surgery,magnifying endoscopy,choledochoscopy,and confocal laser endomicroscopy when necessary for early diagnosis of GBC.However,there is a need for novel methods for early GBC diagnosis,such as the use of artificial intelligence and non-coding RNA biomarkers for improved screening protocols.Additionally,the use of in vitro and animal models may provide critical insights for advancing early detection and treatment strategies of this aggressive tumor. 展开更多
关键词 Gallbladder carcinoma Endoscopic ultrasound BIOPSY ELASTOGRAPHY Cho-ledochoscopy artificial intelligence Non-coding RNAs Screening Animal models In vitro studies
下载PDF
Harnessing artificial intelligence for identifying conflicts of interest in research
7
作者 Abdulqadir J Nashwan 《World Journal of Methodology》 2025年第1期6-8,共3页
This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni... This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings. 展开更多
关键词 artificial intelligence Conflicts of interest TRANSPARENCY Research integrity Natural language processing
下载PDF
Diabetes mellitus and glymphatic dysfunction:Roles for oxidative stress,mitochondria,circadian rhythm,artificial intelligence,and imaging
8
作者 Kenneth Maiese 《World Journal of Diabetes》 SCIE 2025年第1期39-48,共10页
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an... Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction. 展开更多
关键词 artificial intelligence Circadian rhythm Clock genes Diabetes mellitus magnetic resonance imaging Glymphatic pathway MITOCHONDRIA Oxidative stress Programmed cell death Sleep fragmentation
下载PDF
Robust Artificial Noise-Aided Beamforming for A Secure MISO-NOMA Visible Light Communication System 被引量:4
9
作者 Xiaodong Liu Zezong Chen +2 位作者 Yuhao Wang Fuhui Zhou Shuai Ma 《China Communications》 SCIE CSCD 2020年第11期42-53,共12页
Visible light communication(VLC)and non-orthogonal multiple access(NOMA)have been deemed two promising techniques in the next wireless communication networks.In this paper,secure communications in the presence of pote... Visible light communication(VLC)and non-orthogonal multiple access(NOMA)have been deemed two promising techniques in the next wireless communication networks.In this paper,secure communications in the presence of potential eavesdropper are investigated for a multiple-input single-output VLC system with NOMA.The artificial noise jamming and beamforming technologies are applied to improve secure performance.A robust resource allocation scheme is proposed to minimize the total transmit power taking into account the constraints on the quality of service requirement of the desired users and the maximum tolerable data rate of the eavesdropper,and the practical imperfect channel state information of both the desired users and the eavesdropper.The formulated non-convex optimization problem is tackled based onS-Procedure and semi-definite programming relaxation.Simulation results illustrate that our proposed resource allocation scheme can effectively guarantee communication security and achieve transmit power saving.Moreover,the height and number of LED can significantly affect system performance and the optimum LED height can be obtained for different LED numbers. 展开更多
关键词 artificial noise non-orthogonal multiple access physical-layer secrecy robust resource allocation visible light communication
下载PDF
The Full-Duplex Artificial Noise Scheme for Security of a Cellular System 被引量:4
10
作者 JI Xinsheng KANG Xiaolei +2 位作者 HUANG Kaizhi LI Na YI Ming 《China Communications》 SCIE CSCD 2015年第S1期150-156,共7页
This paper focuses on the problem of secure transmission in a cellular system. A full-duplex base station using artificial noise is adopted to improve both the uplink and downlink secrecy rate via pairing terminals wh... This paper focuses on the problem of secure transmission in a cellular system. A full-duplex base station using artificial noise is adopted to improve both the uplink and downlink secrecy rate via pairing terminals which reverses the downlink and uplink of each other. We give the designs of artificial noise and the user's desired signal, and derive the pairing prin-ciple between terminals. Moreover, the influence of self-interference cancellation on secrecy rate is ex-plored. Simulation results show that the secrecy rate can get much better performance by adopting full-duplex artificial noise scheme and proposed pair-ing method. The downlink secrecy rate decreases with the distance between terminals. Besides the uplink secrecy rate is sensitive to the ability of self-interference cancellation. 展开更多
关键词 PHYSICAL LAYER SECURITY CELLULAR system full DUPLEX artificial noise
下载PDF
Artificial Noise Aided Polar Codes for Physical LayerSecurity 被引量:1
11
作者 Huiqing Bai Liang Jin Ming Yi 《China Communications》 SCIE CSCD 2017年第12期15-24,共10页
The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve ... The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve the secrecy rate.Firstly,a secrecy coding model based on AN is presented,where the confidential bits of last transmission code block are adopted as AN to inject into the current codeword.In this way,the AN can only be eliminated from the jammed codeword by the legitimate users.Since the AN is shorter than the codeword,we then develop a suboptimal jamming positions selecting algorithm with the goal of maximizing the bit error rate of the eavesdropper.Theoretical and simulation results demonstrate that the proposed algorithm outperforms the random selection method and the method without AN. 展开更多
关键词 PHYSICAL LAYER SECURITY polarcodes artificial noise jamming POSITIONS se-lection
下载PDF
Fault diagnosis using noise modeling and a new artificial immune system based algorithm 被引量:4
12
作者 Farshid Abbasi Alireza Mojtahedi Mir Mohammad Ettefagh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期725-741,共17页
A new fault classification/diagnosis method based on artificial immune system (AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate... A new fault classification/diagnosis method based on artificial immune system (AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms (GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure. 展开更多
关键词 fault diagnosis physical models modal updating AIS method noise modeling
下载PDF
NOISE IDENTIFICATION FOR HYDRAULIC AXIAL PISTON PUMP BASED ON ARTIFICIAL NEURAL NETWORKS 被引量:1
13
作者 YANG Jian XU Bing YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期120-123,共4页
The noise identification model of the neural networks is established for the 63SCY14 IB hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully ca... The noise identification model of the neural networks is established for the 63SCY14 IB hydraulic axial piston pump. Taking four kinds of different port plates as instances, the noise identification is successfully carried out for hydraulic axial piston pump based on experiments with the MATLAB and the toolbox of neural networks, The operating pressure, the flow rate of hydraulic axial piston pump, the temperature of hydraulic oil, and bulk modulus of hydraulic oil are the main parameters having influences on the noise of hydraulic axial piston pump. These four parameters are used as inputs of neural networks, and experimental data of the noise are used as outputs of neural networks, Error of noise identification is less than 1% after the neural networks have been trained. The results show that the noise identification of hydraulic axial piston pump is feasible and reliable by using artificial neural networks. The method of noise identification with neural networks is also creative one of noise theoretical research for hydraulic axial piston pump. 展开更多
关键词 Hydraulic axial piston pump Neural networks noise Identification MATLAB
下载PDF
Artificial Noise Based Security Algorithm for Multi-User MIMO System
14
作者 Jian-hua Peng Kai-zhi Huang Jiang Ji 《Communications and Network》 2013年第3期194-199,共6页
The existing physical layer security algorithm, which is based on artificial noise, could affect legitimate receivers negatively when the number of users is no less than sending antennas in multi-user MIMO system. In ... The existing physical layer security algorithm, which is based on artificial noise, could affect legitimate receivers negatively when the number of users is no less than sending antennas in multi-user MIMO system. In order to improve security of multi-user MIMO system under this scenario, we propose a new multi-user MIMO system physical layer security algorithm based on joint channel state matrix. Firstly, multiple users are processed together, thus a multi-user joint channel state matrix is established. After achieving Singular Value Decomposition (SVD) of the joint channel state matrix, the minimum singular value is obtained, which can be utilized for precoding to eliminate the interference of artificial noise to legitimate receivers. Further, we also present an approach to optimize the power allocation. Simulation results show that the proposed algorithm can increase secrecy capacity by 0.1 bit/s/HZ averagely. 展开更多
关键词 MULTI-USER MIMO System JOINT Channel State MATRIX SECRECY Capacity artificial noise PHYSICAL LAYER Security
下载PDF
Profiling of Urban Noise Using Artificial Intelligence
15
作者 Le Quang Thao Duong Duc Cuong +1 位作者 Tran Thi Tuong Anh Tran Duc Luong 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1309-1321,共13页
Noise pollution tends to receive less awareness compared to other types of pollution,however,it greatly impacts the quality of life for humans such as causing sleep disruption,stress or hearing impairment.Profiling ur... Noise pollution tends to receive less awareness compared to other types of pollution,however,it greatly impacts the quality of life for humans such as causing sleep disruption,stress or hearing impairment.Profiling urban sound through the identification of noise sources in cities could help to benefit livability by reducing exposure to noise pollution through methods such as noise control,planning of the soundscape environment,or selection of safe living space.In this paper,we proposed a self-attention long short-term memory(LSTM)method that can improve sound classification compared to previous baselines.An attention mechanism will be designed solely to capture the key section of an audio data series.This is practical as we only need to process important parts of the data and can ignore the rest,making it applicable when gathering information with long-term dependencies.The dataset used is the Urbansound8k dataset which specifically pertains to urban environments and data augmentation was applied to overcome imbalanced data and dataset scarcity.All audio sources in the dataset were normalized to mono signals.From the dataset above,an experiment was conducted to confirm the suitability of the proposed model when applied to the mel-spectrogram and MFCC(Mel-Frequency Cepstral Coefficients)datasets transformed from the original dataset.Improving the classification accuracy depends on the machine learning models as well as the input data,therefore we have evaluated different class models and extraction methods to find the best performing.By combining data augmentation techniques and various extraction methods,our classification model has achieved state-of-the-art performance,each class accuracy is up to 98%. 展开更多
关键词 Urban noise noise classification mel-spectrogram MFCC LSTM self-attention
下载PDF
Artificial neural network-based determination of denoised optical properties in double integrating spheres measurement
16
作者 Yusaku Takai Takahiro Nishimura +1 位作者 Yu Shimojo Kunio Awazu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第6期105-116,共12页
Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and s... Accurate determination of the optical properties of biological tissues enables quantitative understanding of light propagation in these tissues for optical diagnosis and treatment applications.The absorption(μa)and scattering(μs)coe±cients of biological tissues are inversely analyzed from their diffuse re°ectance(R)and total transmittance(T),which are measured using a double integrating spheres(DIS)system.The inversion algorithms,for example,inverse adding doubling method and inverse Monte Carlo method,are sensitive to noise signals during the DIS measurements,resulting in reduced accuracy during determination.In this study,we propose an arti ficial neural network(ANN)to estimateμa andμs at a target wavelength from the R and T spectra measured via the DIS to reduce noise in the optical properties.Approximate models of the optical properties and Monte Carlo calculations that simulated the DIS measurements were used to generate spectral datasets comprisingμa,μs,R and T.Measurement noise signals were added to R and T,and the ANN model was then trained using the noise-added datasets.Numerical results showed that the trained ANN model reduced the effects of noise inμa andμs estimation.Experimental veri fication indicated noise-reduced estimation from the R and T values measured by the DIS with a small number of scans on average,resulting in measurement time reduction.The results demonstrated the noise robustness of the proposed ANN-based method for optical properties determination and will contribute to shorter DIS measurement times,thus reducing changes in the optical properties due to desiccation of the samples. 展开更多
关键词 Absorption coefficient scattering coe±cient bio-tissue tissue spectroscopy noise reduction.
下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:3
17
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
下载PDF
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
18
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
Numerical Study on Reduction in Aerodynamic Drag and Noise of High-Speed Pantograph 被引量:1
19
作者 Deng Qin Xing Du +1 位作者 Tian Li Jiye Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2155-2173,共19页
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t... Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise. 展开更多
关键词 High-speed pantograph aerodynamic drag aerodynamic noise REDUCTION optimizing
下载PDF
Concept of Artificial Intelligence (AI) and Its Use in Orthopaedic Practice: Applications and Pitfalls: A Narrative Review 被引量:1
20
作者 Mir Sadat-Ali 《Open Journal of Orthopedics》 2024年第1期32-40,共9页
Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review... Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review is to assess and analyze the use of AI and its use in orthopedic practice, as well as its applications, limitations, and pitfalls. Methods: A review of all relevant databases such as EMBASE, Cochrane Database of Systematic Reviews, MEDLINE, Science Citation Index, Scopus, and Web of Science with keywords of AI, orthopedic surgery, applications, and drawbacks. All related articles on AI and orthopaedic practice were reviewed. A total of 3210 articles were included in the review. Results: The data from 351 studies were analyzed where in orthopedic surgery. AI is being used for diagnostic procedures, radiological diagnosis, models of clinical care, and utilization of hospital and bed resources. AI has also taken a chunk of share in assisted robotic orthopaedic surgery. Conclusions: AI has now become part of the orthopedic practice and will further increase its stake in the healthcare industry. Nonetheless, clinicians should remain aware of AI’s serious limitations and pitfalls and consider the drawbacks and errors in its use. 展开更多
关键词 artificial Intelligence Healthcare PITFALLS Drawbacks
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部