期刊文献+
共找到935篇文章
< 1 2 47 >
每页显示 20 50 100
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
1
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
下载PDF
Development of an Artificial Fish Swarm Algorithm Based on aWireless Sensor Networks in a Hydrodynamic Background
2
作者 Sheng Bai Feng Bao +1 位作者 Fengzhi Zhao Miaomiao Liu 《Fluid Dynamics & Materials Processing》 EI 2020年第5期935-946,共12页
The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor net... The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor network(WSN)in a hydrodynamic background.The nodes of this algorithm are viscous fluids and artificial fish,while related‘events’are directly connected to the food available in the related virtual environment.The results show that the total processing time of the data by the source node is 6.661 ms,of which the processing time of crosstalk data is 3.789 ms,accounting for 56.89%.The total processing time of the data by the relay node is 15.492 ms,of which the system scheduling and the Carrier Sense Multiple Access(CSMA)rollback time of the forwarding is 8.922 ms,accounting for 57.59%.The total time for the data processing of the receiving node is 11.835 ms,of which the processing time of crosstalk data is 3.791 ms,accounting for 32.02%;the serial data processing time is 4.542 ms,accounting for 38.36%.Crosstalk packets occupy a certain amount of system overhead in the internal communication of nodes,which is one of the causes of node-level congestion.We show that optimizing the crosstalk phenomenon can alleviate the internal congestion of nodes to some extent. 展开更多
关键词 artificial fish swarm algorithm wireless sensor network network measurement HYDRODYNAMICS
下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach 被引量:1
3
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi Manar Ahmed Hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
下载PDF
基于人工鱼群-遗传算法的多品种小批量零件数控加工工艺优化研究
4
作者 张天瑞 乔文澍 《制造技术与机床》 北大核心 2024年第5期152-159,共8页
基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗... 基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗糙度模型,对各工序能耗模型及整体粗糙度进行归一化处理,形成整体能耗模型;其次,以能耗及粗糙度为目标函数,建立AFSA-GA算法,通过对各工序能耗求解得出最适当的机床功率及其所对应的能耗和表面粗糙度;最后,针对所获得的最优功率,进行优化结果的验证,为五轴机床的实际加工提供解决方案。 展开更多
关键词 加工工艺优化 多品种小批量 零件加工 人工鱼群-遗传算法
下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
5
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
下载PDF
Intelligent approach of score-based artificial fish swarm algorithm(SAFSA)for Parkinson’s disease diagnosis 被引量:1
6
作者 Syed Haroon Abdul Gafoor Padma Theagarajan 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第4期540-561,共22页
Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resu... Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resulting in misdiagnosis.Meanwhile,early nonmotor signs of Parkinson’s disease(PD)can be mild and may be due to variety of other conditions.As a result,these signs are usually ignored,making early PD diagnosis difficult.Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD(like,movement disorders or other Parkinsonian syndromes).Design/methodology/approach-Medical observations and evaluation of medical symptoms,including characterization of a wide range of motor indications,are commonly used to diagnose PD.The quantity of the data being processed has grown in the last five years;feature selection has become a prerequisite before any classification.This study introduces a feature selection method based on the score-based artificial fish swarm algorithm(SAFSA)to overcome this issue.Findings-This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database.Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant.According to a few objective functions,features subset chosen should provide the best performance.Research limitations/implications-In many situations,this is an Nondeterministic Polynomial Time(NPHard)issue.This method enhances the PD detection rate by selecting the most essential features from the database.To begin,the data set’s dimensionality is reduced using Singular Value Decomposition dimensionality technique.Next,Biogeography-Based Optimization(BBO)for feature selection;the weight value is a vital parameter for finding the best features in PD classification.Originality/value-PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor,kernel support vector machines,fuzzy convolutional neural network and random forest.The suggested classifiers are trained using data from UCIMLrepository,and their results are verified using leave-one-person-out cross validation.The measures employed to assess the classifier efficiency include accuracy,F-measure,Matthews correlation coefficient. 展开更多
关键词 Parkinson disease dysphonia features Feature subset selection Score-based artificial fish swarm algorithm(SAFSA) Singular value decomposition(SVD) Classification
原文传递
基于AFSA-SVM动态光谱的血液识别研究
7
作者 马焕臻 闫薪如 +7 位作者 辛英健 方沛沛 王泓鹏 王一安 段明康 贾建军 何继业 万雄 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1877-1882,共6页
血液是一种受管制的特殊遗传生物资源。针对传统血液光谱检测中易氧化变质的问题,采用基于仿生血管的动态共聚焦拉曼荧光光谱,开展了猪、马、鸽、鸡、鸭、鹅等六种家禽家畜的血液物种鉴别研究。原始光谱的预处理过程包括去基线、平滑和... 血液是一种受管制的特殊遗传生物资源。针对传统血液光谱检测中易氧化变质的问题,采用基于仿生血管的动态共聚焦拉曼荧光光谱,开展了猪、马、鸽、鸡、鸭、鹅等六种家禽家畜的血液物种鉴别研究。原始光谱的预处理过程包括去基线、平滑和归一化等。采用线性判别分析对光谱数据进行降维处理,继而用支持向量机建立识别模型,选用高斯核函数,通过人工鱼群算法优化支持向量机的参数C和γ,使其分类准确率最高,最优的C和γ分别为0.2和0.134。人工鱼群-支持向量机模型识别准确率达到97.2%,基于仿生血管的动态共聚焦拉曼荧光光谱可以满足血液安全高效的检测要求,用人工鱼群算法优化支持向量机参数的算法模型表现出较好的分类效果。 展开更多
关键词 人工鱼群算法 共聚焦拉曼光谱 支持向量机
下载PDF
基于AFSPSO-ν-SVM的山洪灾害预测方法研究
8
作者 曹宁 徐根祺 +3 位作者 张雯 许又文 何盼情 刘浩 《计算机与现代化》 2024年第5期33-37,45,共6页
随着科学技术的发展,人类在山区的工程活动越来越频繁,这加剧了山洪灾害的发生频率。准确及时预测出山洪灾害发生的可能性,对于保证工程安全、降低经济损失、提高人员安全防范能力具有重要意义。将人工智能算法应用于山洪灾害预测成为... 随着科学技术的发展,人类在山区的工程活动越来越频繁,这加剧了山洪灾害的发生频率。准确及时预测出山洪灾害发生的可能性,对于保证工程安全、降低经济损失、提高人员安全防范能力具有重要意义。将人工智能算法应用于山洪灾害预测成为当下研究者们关注的焦点。为了解决当下山洪诱发因素敏感性差异导致的预测精度不足、小样本数据引起的模型拟合效果欠优以及非线性模型参数不易确定等问题,将主成分分析与ν支持向量机相结合对山洪发生进行预测,通过人工鱼群算法扩大粒子群算法中粒子的搜索范围和速度,并利用改进粒子群算法对支持向量机参数进行寻优,建立AFSPSO-ν-SVM山洪灾害概率预测模型。通过实验对比了本文模型与BL模型、ν-SVM模型、PSO-ν-SVM模型的性能,结果表明,本文模型误差最小且速度最快。本文研究为山洪预报预警领域研究提供了一种新的思路。 展开更多
关键词 人工鱼群算法 粒子群算法 支持向量机 山洪灾害 预测模型
下载PDF
基于人工鱼群与蛙跳混合算法的变压器Jiles-Atherton模型参数辨识 被引量:35
9
作者 耿超 王丰华 +1 位作者 苏磊 张君 《中国电机工程学报》 EI CSCD 北大核心 2015年第18期4799-4807,共9页
变压器铁芯磁化特性的准确建模是研究变压器直流偏磁现象的关键,在使用Jiles-Atherton(J-A)模型对变压器的磁滞回线进行建模分析时,需要对变压器直流偏磁工况下J-A模型中的5个关键参数进行准确识别。提出了人工鱼群与蛙跳混合算法对J-A... 变压器铁芯磁化特性的准确建模是研究变压器直流偏磁现象的关键,在使用Jiles-Atherton(J-A)模型对变压器的磁滞回线进行建模分析时,需要对变压器直流偏磁工况下J-A模型中的5个关键参数进行准确识别。提出了人工鱼群与蛙跳混合算法对J-A模型中的关键参数进行辨识,该算法将两种仿生算法有机融合,在鱼群算法寻找到最优区域后切换至蛙跳算法进行局部搜索,兼具了人工鱼群算法前期收敛迅速与蛙跳算法局部搜索准确的优势。分别将所提混合算法及多种现有识别算法应用于数值仿真算例与变压器直流偏磁实测曲线的参数识别,结果表明基于人工鱼群与蛙跳混合算法得到的变压器磁滞回线与实测曲线吻合良好,且具有识别精度高和计算效率高的优点,验证了该算法在变压器J-A模型参数识别中的有效性,进而可以应用于对变压器直流偏磁下运行特性的准确分析。 展开更多
关键词 Jiles-Atherton模型 变压器 直流偏磁 人工鱼群算法 蛙跳算法
下载PDF
基于人工鱼群算法和模糊C-均值聚类的洪水分类方法 被引量:30
10
作者 汪丽娜 陈晓宏 +1 位作者 李粤安 林凯荣 《水利学报》 EI CSCD 北大核心 2009年第6期743-748,755,共7页
为了克服模糊C-均值聚类(FCM)算法依赖初值的缺点,引入人工鱼群算法(AFS)建立一种新的聚类算法,应用于洪水分类研究。该算法将聚类中心看作食物源,通过样本抽样产生初始鱼群,利用人工鱼群算法能全局寻优和快速收敛的特点,得到一个较优... 为了克服模糊C-均值聚类(FCM)算法依赖初值的缺点,引入人工鱼群算法(AFS)建立一种新的聚类算法,应用于洪水分类研究。该算法将聚类中心看作食物源,通过样本抽样产生初始鱼群,利用人工鱼群算法能全局寻优和快速收敛的特点,得到一个较优的初始聚类结果,再使用FCM算法进行局部搜索,以避免因初值选取不当,而有可能陷入局部最小的缺陷。该方法应用于对西江流域洪水资料的分析结果表明,新算法具有比FCM算法更好的性能表现,使得到的分类结果更加准确合理。 展开更多
关键词 人工鱼群算法 模糊C-均值聚类算法 洪水分类
下载PDF
改进的蜂群LS-SVM故障预测 被引量:7
11
作者 王久崇 樊晓光 +1 位作者 盛晟 黄雷 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2013年第1期16-19,共4页
为了提高基于最小二乘支持向量机的故障预测精准度,提出了AFS-ABC算法,用于组合优化LS-SVM的规则化参数C和宽度参数σ。该算法将鱼群算法AFS简化模型中人工鱼的寻优更新方法引入到蜂群算法中,以互补优势、互克不足。通过100维Ackley函... 为了提高基于最小二乘支持向量机的故障预测精准度,提出了AFS-ABC算法,用于组合优化LS-SVM的规则化参数C和宽度参数σ。该算法将鱼群算法AFS简化模型中人工鱼的寻优更新方法引入到蜂群算法中,以互补优势、互克不足。通过100维Ackley函数验证了该算法在优化精度和搜索速度上较AFS算法与ABC算法的优越性,并以某航空电子系统电源模块记录电压数据序列的前40个作为LS-SVM模型的训练集,后15个作为测试集,利用MAT-LAB的LS-SVM工具箱进行状态预测仿真。结果表明,AFS-ABC算法较好地改善了LS-SVM的预测精度,同时解决了局部极值和寻优结果精度低的问题。 展开更多
关键词 故障预测 最小二乘支持向量机 蜂群算法 鱼群算法
下载PDF
用于水轮机-引水管道参数辨识的改进型人工鱼群算法 被引量:9
12
作者 刘昌玉 何雪松 +3 位作者 李崇威 王湛 张恩博 颜秋容 《电力自动化设备》 EI CSCD 北大核心 2013年第11期54-58,63,共6页
提出了一种融合蚁群算法的改进型人工鱼群算法,对水轮机-引水管道系统进行参数辨识。该算法在每次迭代中先应用鱼群算法对搜索空间进行全局搜索,然后以当代全局最优解为基础利用蚁群算法对其领域进行局部搜索。根据现场实测数据,所提算... 提出了一种融合蚁群算法的改进型人工鱼群算法,对水轮机-引水管道系统进行参数辨识。该算法在每次迭代中先应用鱼群算法对搜索空间进行全局搜索,然后以当代全局最优解为基础利用蚁群算法对其领域进行局部搜索。根据现场实测数据,所提算法通过最小化目标函数辨识出了水轮机-引水管道模型参数。基于实测数据的建模结果表明,与传统辨识方法相比,所提算法具有更好的全局优化能力和鲁棒性能。 展开更多
关键词 水轮机 引水管道 参数辨识 人工鱼群算法 蚁群优化算法 建模 仿真
下载PDF
基于PCA-MCAFA-LSSVM的养殖水质pH值预测模型 被引量:41
13
作者 刘双印 徐龙琴 +1 位作者 李振波 李道亮 《农业机械学报》 EI CAS CSCD 北大核心 2014年第5期239-246,共8页
为解决水质预测传统方法精度低、鲁棒性差等问题,提出了基于主成分分析(PCA)、改进文化鱼群算法(MCAFA)和最小二乘支持向量机(PCA-MCAFA-LSSVM)的养殖水质pH值预测模型。该模型通过主成分分析提取养殖生态环境指标的主成分,降... 为解决水质预测传统方法精度低、鲁棒性差等问题,提出了基于主成分分析(PCA)、改进文化鱼群算法(MCAFA)和最小二乘支持向量机(PCA-MCAFA-LSSVM)的养殖水质pH值预测模型。该模型通过主成分分析提取养殖生态环境指标的主成分,降低模型输入向量维数,利用改进文化鱼群算法对最小二乘支持向量机超参数进行组合优化,以自动获取最优超参数建立非线性养殖水质pH值预测模型。应用该模型对宜兴市河蟹养殖某池塘2011年9月1日~9月4日在线监测的水质数据进行了预测分析,试验结果表明:该模型取得较好的预测效果,与分别用蚁群算法或遗传算法优化LSSVM的方法相比,PCA-MCAFA-LSSVM模型有93.05%的测试样本绝对误差小于8%,最大绝对误差仅为11.61%,均方根误差、平均相对误差绝对值和运行时间分别为0.0474、0.0041和4.367s,且均优于其他预测方法。PCA-MCAFA-LSSVM算法不仅计算速度快、测精度高,还能够为河蟹养殖水质调控管理提供决策依据。 展开更多
关键词 养殖水质 pH值预测 文化鱼群算法 最小二乘支持向量机 参数优化 主成分分析
下载PDF
配送中心选址问题的BFO-AFSA算法研究 被引量:9
14
作者 费腾 张立毅 陈雷 《计算机工程与应用》 CSCD 北大核心 2015年第23期1-5,10,共6页
以细菌觅食算法改进的人工鱼群算法为工具,提出了一种新的解决配送中心选址问题的群智能算法。细菌觅食算法改进的人工鱼群算法主要针对基本人工鱼群算法后期容易陷入局部最优的缺点,利用细菌觅食算法局部搜索能力强的特点,将细菌觅食... 以细菌觅食算法改进的人工鱼群算法为工具,提出了一种新的解决配送中心选址问题的群智能算法。细菌觅食算法改进的人工鱼群算法主要针对基本人工鱼群算法后期容易陷入局部最优的缺点,利用细菌觅食算法局部搜索能力强的特点,将细菌觅食算法中的趋化思想应用到基本人工鱼群算法中。通过算法测试可以看出,改进人工鱼群算法在搜索精度、可靠性、优化速度及稳定性方面相对于基本鱼群算法更有效。通过选址实例仿真可以看出,改进人工鱼群算法在解决配送中心选址问题上相对于基本鱼群算法更具优越性,改进人工鱼群算法能够寻找到更低的成本。 展开更多
关键词 配送中心选址 人工鱼群算法 细菌觅食 趋化
下载PDF
基于改进鱼群和K-means的混合聚类算法 被引量:8
15
作者 刘薇 刘柏嵩 王洋洋 《计算机工程与应用》 CSCD 2013年第22期119-122,共4页
针对传统K-means算法存在的缺陷,引进人工鱼群算法,提出了一种基于改进鱼群和K-means的混合聚类算法。聚类样本中心点初始化时,人工鱼各维参数随机选择在对应属性两个极值之间,同时为了降低计算复杂度,提高收敛效率,寻找全局最优,首先... 针对传统K-means算法存在的缺陷,引进人工鱼群算法,提出了一种基于改进鱼群和K-means的混合聚类算法。聚类样本中心点初始化时,人工鱼各维参数随机选择在对应属性两个极值之间,同时为了降低计算复杂度,提高收敛效率,寻找全局最优,首先对随机选取的一小部分人工鱼进行K-means操作,然后对全体人工鱼的追尾算子引入粒子群策略,引导其学习,模拟人工鱼的行为。通过Matlab仿真实现算法,在费雪鸢尾花卉数据集和葡萄酒质量数据集进行了实验,算法的有效性和可行性得到了验证。 展开更多
关键词 人工鱼群 K-均值 聚类 粒子群 混合算法
下载PDF
IAFSA-RBF神经网络在短期负荷预测中的应用 被引量:7
16
作者 李如琦 褚金胜 +1 位作者 谢林峰 王宗耀 《电力系统及其自动化学报》 CSCD 北大核心 2011年第2期142-146,共5页
为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并... 为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并且利用该算法自动选取径向基函数RBF(radial basis function)神经网络中的输入变量,以及对网络中隐含层到输出层之间的权值进行训练,从而减少了RBF神经网络的工作量,提高了训练速度。用优化后的RBF神经网络进行短期负荷预测,结果表明,该方法具有较高的预测精度。 展开更多
关键词 负荷预测 神经网络 人工鱼群算法 免疫算法 输入变量选择 径向基函数
下载PDF
改进AFSA-BP神经网络的湿度传感器温度补偿研究 被引量:22
17
作者 何怡刚 陈张辉 +1 位作者 李兵 苏蓓蕾 《电子测量与仪器学报》 CSCD 北大核心 2018年第7期95-100,共6页
为减小温度对声表面波射频识别(SAW-RFID)湿度传感器测量精度引起的误差,需要对实测的湿度进行温度补偿。通过对人工鱼群算法(AFSA)中鱼群初始化方式、视野和步长以及拥挤度因子的改进研究,得到改进的AFSA。采用改进的AFSA对反向传播(BP... 为减小温度对声表面波射频识别(SAW-RFID)湿度传感器测量精度引起的误差,需要对实测的湿度进行温度补偿。通过对人工鱼群算法(AFSA)中鱼群初始化方式、视野和步长以及拥挤度因子的改进研究,得到改进的AFSA。采用改进的AFSA对反向传播(BP)神经网络的初始权值阈值进行全局寻优,再用寻优后的权值阈值建立的BP神经网络对SAW-RFID湿度传感器进行温度补偿。最后将此方法建立的BP神经网络、传统BP神经网络和遗传算法神经网络(GA-BP)的性能及温度补偿结果比较。实验结果显示,改进的AFSA收敛速度快、寻优能力强,建立的网络模型能有效降低温度对湿度测量精度的影响,提高了湿度测量的精度。 展开更多
关键词 相对湿度 温度补偿 人工鱼群算法 BP神经网络
下载PDF
基于改进人工势场-鱼群算法的LBS最短路径修正研究 被引量:7
18
作者 陈廷斌 张奇松 杨晓光 《计算机应用与软件》 CSCD 2015年第6期259-262,共4页
LBS(Location Based Service),即基于位置的服务,是通过无线通信设施或是外部定位方式取得移动终端用户位置信息,在GIS系统的支持下,为用户提供相应位置服务的一种增值服务。以LBS系统中动态目标的追踪为研究对象,通过对基础人工势场法... LBS(Location Based Service),即基于位置的服务,是通过无线通信设施或是外部定位方式取得移动终端用户位置信息,在GIS系统的支持下,为用户提供相应位置服务的一种增值服务。以LBS系统中动态目标的追踪为研究对象,通过对基础人工势场法进行研究,提出一种改进人工势场法:在引力场中加入速度因素,使其能追踪动态目标。同时,由于复杂环境的多变性,将改进人工势场法与人工鱼群算法相结合,对路径进行评估和修正,获得最优路径。仿真实验显示,该算法在LBS系统中的有效性,同时与一般智能算法相比,基于改进人工势场-鱼群算法到达目标时间明显缩短,提高了搜索效率。 展开更多
关键词 改进式人工势场 人工鱼群算法 路径修正
下载PDF
基于NCSPSO-AFSA优化SVM的林木冠层图像分割 被引量:6
19
作者 张冬 刘俊焱 +1 位作者 薛联凤 云挺 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2016年第3期118-124,共7页
【目的】对林木冠层图像采用NCSPSO-AFSA优化支持向量机(SVM)进行图像分割,提取树干分割图,以进一步提高分割效果。【方法】对现有的小生境和交叉算子的粒子群算法(NCSPSO)进行优化,并与人工鱼群算(AFSA)混合,寻找最优惩罚系数C... 【目的】对林木冠层图像采用NCSPSO-AFSA优化支持向量机(SVM)进行图像分割,提取树干分割图,以进一步提高分割效果。【方法】对现有的小生境和交叉算子的粒子群算法(NCSPSO)进行优化,并与人工鱼群算(AFSA)混合,寻找最优惩罚系数C和高斯核函数中的参数γ;然后运用SVM方法对训练样本进行综合训练,以建立最佳分类模型;最后对香樟树、马褂木和杨树的冠层图像进行分割,并与AFSA算法、NCSPSO算法的分割效果进行比较。【结果】AFSA、NCSPSO、NCSPSO-AFSA算法的平均运行时间分别为178.909,154.661和97.213s,平均分割准确率分别为90.83%,94.08%和98.90%,表明改进的NCSPSO-AFSA混合算法在效率上较其他2种算法提高了63%以上,而且分割准确率提高了5%~8%。【结论】运用NCSPSO-AFSA优化SVM方法对林木冠层图像进行树干图像分割,可得到最佳分割效果。 展开更多
关键词 林木图像分割 NCSPSO 人工鱼群 支持向量机
下载PDF
基于AFSA-SVM的网络入侵检测模型 被引量:7
20
作者 李玉霞 刘丽 沈桂兰 《计算机工程与应用》 CSCD 2013年第24期74-77,共4页
特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集... 特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。 展开更多
关键词 特征选择 人工鱼群算法 支持向量机 网络入侵检测
下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部