We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th...We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.展开更多
The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverte...The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverter is a non-linear load using power electronic components causing distortions in the load voltage and current wave patterns from the sinusoidal waveforms due to harmonics. The mapping state space model for a full bridge voltage source inverter was developed using output load resistance. An optimal ABC technique has been designed and optimized values are estimated using a full bridge voltage controlled inverter using Proportional Integral Algorithm. The MATLAB/SIMULINK tool and Experimental setup were implemented and their THD values were estimated. Also this ABC scheme is compared with the previous results such as PI Algorithm, Fuzzy logic controller and Neuro-fuzzy controllers. From the simulation and experimental results using ABC algorithm, it is observed that the total harmonics are mitigated considerably compared to previous results with respect to the power quality standards such as IEEE-519 and IEC 61000.展开更多
利用无源车辆ISD(inerter spring damper)悬架系统可有效抑制车身低频振动的特性,结合经典加速度驱动阻尼(acceleration driven damping,ADD)控制可抑制车身中高频振动的特点,提出基于ADD正实网络的车辆ISD悬架综合优化设计方法,将车辆...利用无源车辆ISD(inerter spring damper)悬架系统可有效抑制车身低频振动的特性,结合经典加速度驱动阻尼(acceleration driven damping,ADD)控制可抑制车身中高频振动的特点,提出基于ADD正实网络的车辆ISD悬架综合优化设计方法,将车辆ISD悬架的宽频域振动抑制问题转化为基于ADD网络综合的正实优化控制问题。分别构建一阶和二阶正实网络的悬架动态模型,基于鱼群算法优化悬架结构参数,仿真分析ADD控制与正实网络的耦合作用机理和正实网络阶次对悬架性能的影响。结果表明:悬架的隔振性能随正实网络阶次的升高而提升,ADD网络综合的方法可以有效的实现车辆ISD悬架的宽频域的振动抑制,进一步拓展车辆ISD悬架主动控制的思路。展开更多
基金Project(51779052)supported by the National Natural Science Foundation of ChinaProject(QC2016062)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(614221503091701)supported by the Research Fund from Science and Technology on Underwater Vehicle Laboratory,ChinaProject(LBH-Q17046)supported by the Heilongjiang Postdoctoral Funds for Scientific Research Initiation,ChinaProject(HEUCFP201741)supported by the Fundamental Research Funds for the Central Universities,China
文摘We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified.
文摘The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverter is a non-linear load using power electronic components causing distortions in the load voltage and current wave patterns from the sinusoidal waveforms due to harmonics. The mapping state space model for a full bridge voltage source inverter was developed using output load resistance. An optimal ABC technique has been designed and optimized values are estimated using a full bridge voltage controlled inverter using Proportional Integral Algorithm. The MATLAB/SIMULINK tool and Experimental setup were implemented and their THD values were estimated. Also this ABC scheme is compared with the previous results such as PI Algorithm, Fuzzy logic controller and Neuro-fuzzy controllers. From the simulation and experimental results using ABC algorithm, it is observed that the total harmonics are mitigated considerably compared to previous results with respect to the power quality standards such as IEEE-519 and IEC 61000.
文摘利用无源车辆ISD(inerter spring damper)悬架系统可有效抑制车身低频振动的特性,结合经典加速度驱动阻尼(acceleration driven damping,ADD)控制可抑制车身中高频振动的特点,提出基于ADD正实网络的车辆ISD悬架综合优化设计方法,将车辆ISD悬架的宽频域振动抑制问题转化为基于ADD网络综合的正实优化控制问题。分别构建一阶和二阶正实网络的悬架动态模型,基于鱼群算法优化悬架结构参数,仿真分析ADD控制与正实网络的耦合作用机理和正实网络阶次对悬架性能的影响。结果表明:悬架的隔振性能随正实网络阶次的升高而提升,ADD网络综合的方法可以有效的实现车辆ISD悬架的宽频域的振动抑制,进一步拓展车辆ISD悬架主动控制的思路。