In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-...In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.展开更多
Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secr...Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury.展开更多
The macrophages mediated biodegradation of two biomaterials, collagen / hydroxylapatite (CHA) and beta-tricalcium phosphate ceramics (TCP), was studied in 24 male Kunming mice and 20 male C57BL / 6 mice with histopath...The macrophages mediated biodegradation of two biomaterials, collagen / hydroxylapatite (CHA) and beta-tricalcium phosphate ceramics (TCP), was studied in 24 male Kunming mice and 20 male C57BL / 6 mice with histopathologic, histochemical and ultrastructural observation. It was demonstrated that macrophages infiltrated after CHA, TCP were implanted. The macrophages could be differentiated from fibroblasts and the other infiltrated cells for special cellular profile and strong acid phosphatase activity. Morphologically, monocyte macrophages and infused multinuclear giant cell degraded CHA and TCP by phagocytosis and extracellular resorption. The carbonic anhydrase activity of macrophages was demonstrated by histochemical technique. It suggested that macrophages secreted H+ and accomplished the decalcification of calcium phosphate compound of CHA and TCP. We conclude that macrophages are the main mediating cells which degraded CHA and TCP intracellularly and extracellularly.展开更多
基金supported by a grant from the National Key Basic Research Program of China,No.2014CB542202 and 2014CB542205the National Natural Science Foundation of China,No.30973095&81371354+2 种基金a grant from Science and Technology Project of Guangzhou,in China,No.12C32121609the Natural Science Foundation of Guangdong Province of China,No.S2013010014697 to Guo JSHong Kong SCI Fund to Wu WT
文摘In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.
基金supported by Military Medical Science&Technology Youth Training Program,No. 19QNP005President Foundation of Nanfang Hospital,Southern Medical University,No. 2020B028 (both to JY)。
文摘Studies have shown that human hair keratin(HHK) has no antigenicity and excellent mechanical properties. Schwann cells, as unique glial cells in the peripheral nervous system, can be induced by interleukin-1β to secrete nerve growth factor, which promotes neural regeneration. Therefore, HHK with Schwann cells may be a more effective approach to repair nerve defects than HHK without Schwann cells. In this study, we established an artificial nerve graft by loading an HHK skeleton with activated Schwann cells. We found that the longitudinal HHK microfilament structure provided adhesion medium, space and direction for Schwann cells, and promoted Schwann cell growth and nerve fiber regeneration. In addition, interleukin-1β not only activates Schwann cells, but also strengthens their activity and increases the expression of nerve growth factors. Activated Schwann cells activate macrophages, and activated macrophages secrete interleukin-1β, which maintains the activity of Schwann cells. Thus, a beneficial cycle forms and promotes nerve repair. Furthermore, our studies have found that the newly constructed artificial nerve graft promotes the improvements in nerve conduction function and motor function in rats with sciatic nerve injury, and increases the expression of nerve injury repair factors fibroblast growth factor 2 and human transforming growth factor B receptor 2. These findings suggest that this artificial nerve graft effectively repairs peripheral nerve injury.
文摘The macrophages mediated biodegradation of two biomaterials, collagen / hydroxylapatite (CHA) and beta-tricalcium phosphate ceramics (TCP), was studied in 24 male Kunming mice and 20 male C57BL / 6 mice with histopathologic, histochemical and ultrastructural observation. It was demonstrated that macrophages infiltrated after CHA, TCP were implanted. The macrophages could be differentiated from fibroblasts and the other infiltrated cells for special cellular profile and strong acid phosphatase activity. Morphologically, monocyte macrophages and infused multinuclear giant cell degraded CHA and TCP by phagocytosis and extracellular resorption. The carbonic anhydrase activity of macrophages was demonstrated by histochemical technique. It suggested that macrophages secreted H+ and accomplished the decalcification of calcium phosphate compound of CHA and TCP. We conclude that macrophages are the main mediating cells which degraded CHA and TCP intracellularly and extracellularly.