Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying availabl...Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.展开更多
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap...During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.展开更多
Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the pr...Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.展开更多
Since the 1970's, frozen ground has been developing near the Tokyo Bay area around liquefied natural gas(LNG) inground storage tanks. For disaster prevention purposes, the tanks are constructed below the ground su...Since the 1970's, frozen ground has been developing near the Tokyo Bay area around liquefied natural gas(LNG) inground storage tanks. For disaster prevention purposes, the tanks are constructed below the ground surface. Since the temperature of the liquid stored in the tanks is -162℃ the soil surrounding the tanks freezes. Since this frozen ground has existed for almost half a century, we have permafrost near Tokyo. The development of artificial frozen ground may cause frost heaving, resulting in frost heave forces that may cause structural damage of adjacent LNG in-ground storage tanks.Therefore, the demand for frozen ground engineering increased and consequently we now have advanced technology in this area. Fortunately, we use this engineering technology and artificial ground freezing for civil engineering, especially in big and crowded cities like Tokyo. This paper provides a summary of the testing apparatus, test methods, and assessment methods for frost heaving.展开更多
Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed...Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.展开更多
The freezing-thawing deformation behaviors of consolidated soils under high pressure have been investigated in a high-pressure-low-temperature (HPLT) Kq consolidation apparatus with a small strain sensor. The tests...The freezing-thawing deformation behaviors of consolidated soils under high pressure have been investigated in a high-pressure-low-temperature (HPLT) Kq consolidation apparatus with a small strain sensor. The tests cover a variety of frozen soil temperatures ranging from -2℃ to -10 ℃, and a series of applied pressures ranging from 1 MPa to 5 MPa. The test results show that, for the consolidated soils under high pressure, their freezing-thawing deformation was caused by the realignment and the deformation of soil particles, the phase change of water, and the water redistribution in the soil. As for the deformation produced by thermal expansion and contraction,it is about 0.04-0.05 mm, accounting for only about 7%~9% of the total deformation. Taking the freezing-thawing deformation produced by temperature disturbance as a creep deformation, the creep models of the developing soil deformation will be determined by the soil's final temperature, i.e., the desired temperature. For the soils under a desired temperature between -2℃ and -5℃, the freezing-thawing de-formation develops according to a non-attenuation creep model; but for the soils with a desired temperature lower than -5℃, a full attenuation creep model is followed. The applied pressure and soil type also have a significant influence on the maximum freezing deformation. Generally, the greater the desired pressure applied, the less the maximum deformation is; and the loess freezing deformation is larger than that of sand.展开更多
The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen s...The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.展开更多
A comprehensive and systematic research on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature was carried out by analytic computation according to the ...A comprehensive and systematic research on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature was carried out by analytic computation according to the theory of similitude. The distribution law of thawing temperature field, calculation formulas of thawing radius b, heat flux density q and average thawing temperature T were obtained. It theoretically explains that the main influential factors of thawing radius b, heat flux density q and thawing average temperature T are K,f, Lx and co(l), but Lc affects little. Finally, based on the forcible thawing project of Hulusu air shaft lining, the field data indicate that the analytical formulas of this article are comparatively accurate.展开更多
This paper investigates the influence of the deviation in freeze pipe installation on the development of the frozen wall in long cross passages by numerical simulation with ANSYS software.The study case is from the ar...This paper investigates the influence of the deviation in freeze pipe installation on the development of the frozen wall in long cross passages by numerical simulation with ANSYS software.The study case is from the artificial ground freezing project along the Fuzhou Metro Line 2 between Ziyang Station and Wuliting Station.Two freezepipe configurations,i.e.,one with perfectly aligned pipes without any deviation from design and another with randomly distributed deviation,are included for comparison.The effect of the random deviation in the freeze pipes on frozen wall interconnection time,the thickness of the frozen wall and the development of the temperature field is explored.For the characteristic section of the numerical model at a depth of 25 m,it is found that the frozen wall interconnection time under the random deviation case and no deviation case is 24 days and 18 days,respectively.The difference in the thickness of the thinnest frozen wall segment between the random deviation and no deviation cases is the largest in the early freezing stage(up to 0.75 m),which decreases with time to 0.31 m in the late freezing stage.The effects of random deviation are more significant in the early freezing stage and diminish as the freezing time increases.展开更多
This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into acc...This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil.展开更多
The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superpos...The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached for the first time.展开更多
The existing analytical formulas to calculate the temperature field distribution of artificial frozen soil walls are all based on the conditions that the surface temperatures of all freezing pipes are equivalent. In t...The existing analytical formulas to calculate the temperature field distribution of artificial frozen soil walls are all based on the conditions that the surface temperatures of all freezing pipes are equivalent. In this paper, analytical solution of steady state temperature field of two freezing pipes with diferent temperatures is deduced based on thermal potential superposition method. The correctness of the analytical formulas is verified by comparing the temperature field distributions of the analytical formulas and those of the numerical simulations in the same conditions. And discussions are made to analyze the influence of some parameters on temperature field distribution of this condition.展开更多
文摘Current practice of underground artificial ground freezing(AGF)typically involves huge refrigeration systems of large economic and environmental costs.In this study,a novel AGF technique is proposed deploying available cold wind in cold regions.This is achieved by a static heat transfer device called thermosyphon equipped with an air insulation layer.A refrigeration unit can be optionally integrated to meet additional cooling requirements.The introduction of air insulation isolates the thermosyphon from ground zones where freezing is not needed,resulting in:(1)steering the cooling resources(cold wind or refrigeration)towards zones of interest;and(2)minimizing refrigeration load.This design is demonstrated using well-validated mathematical models from our previous work based on two-phase enthalpy method of the ground coupled with a thermal resistance network for the thermosyphon.Two Canadian mines are considered:the Cigar Lake Mine and the Giant Mine.The results show that our proposed design can speed the freezing time by 30%at the Giant Mine and by two months at the Cigar Lake Mine.Further,a cooling load of 2.4 GWh can be saved at the Cigar Lake Mine.Overall,this study provides mining practitioners with sustainable solutions of underground AGF.
基金supported by the National Natural Science Foundation of China(Grant No.42071095)the Program of the State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE-ZQ-59)+1 种基金the Science and Technology Project of Gansu Province(Grant No.22JR5RA086)the Science and Technology Research and Development Program of the Qinghai-Tibet Group Corporation(Grant No.QZ2022-G02).
文摘During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost.
基金supported by 17-11-01204 project(Russian Science Foundation)。
文摘Artificial freezing of water-bearing soil layers composing a sedimentary deposit can induce frost heave and water migration that affect the natural stress-strain state of the soil layers and freezing process.In the present paper,a thermo-hydro-mechanical(THM)model for freezing of water-saturated soil is proposed to study the effects of frost heave and water migration in frozen soils on the formation of a frozen wall and subsequent excavation activity for sinking a vertical shaft.The governing equations of the model are formulated relative to porosity,temperature,and displacement which are considered as primary variables.The relationship between temperature,pore water,and ice pressure in frozen soil is established by the Clausius-Clapeyron equation,whereas the interaction between the stress-strain behavior and changes in porosity and pore pressure is described with the poromechanics theory.Moreover,constitutive relations for additional mechanical deformation are incorporated to describe volumetric expansion of soil during freezing as well as creep strain of soil in the frozen state.The ability of the proposed model to capture the frost heave of frozen soil is demonstrated by a comparison between numerical results and experimental data given by a one-sided freezing test.Also to validate the model in other freezing conditions,a radial freezing experiment is performed.After the validation procedure,the model is applied to numerical simulation of artificial freezing of silt and sand layers for shaft sinking at Petrikov potash mine in Belarus.Comparison of calculated temperature with thermal monitoring data during active freezing stage is presented.Numerical analysis of deformation of unsupported sidewall of a shaft inside the frozen wall is conducted to account for the change in natural stress-strain state of soil layers induced by artificial freezing.
文摘Since the 1970's, frozen ground has been developing near the Tokyo Bay area around liquefied natural gas(LNG) inground storage tanks. For disaster prevention purposes, the tanks are constructed below the ground surface. Since the temperature of the liquid stored in the tanks is -162℃ the soil surrounding the tanks freezes. Since this frozen ground has existed for almost half a century, we have permafrost near Tokyo. The development of artificial frozen ground may cause frost heaving, resulting in frost heave forces that may cause structural damage of adjacent LNG in-ground storage tanks.Therefore, the demand for frozen ground engineering increased and consequently we now have advanced technology in this area. Fortunately, we use this engineering technology and artificial ground freezing for civil engineering, especially in big and crowded cities like Tokyo. This paper provides a summary of the testing apparatus, test methods, and assessment methods for frost heaving.
基金supported by the financial support from National Natural Science Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+4 种基金The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education(No.2020P04)the support above is gratefully acknowledged.
文摘Freeze-sealing pipe roof method is applied in the Gongbei tunnel,which causes the ground surface uplift induced by frost heave.A frost heaving prediction approach based on the coefficient of cold expansion is proposed to simulate the ground deformation of the Gongbei tunnel.The coefficient of cold expansion in the model and the frost heaving rate from the frost heave test under the hydration condition can achieve a good correspondence making the calculation result closer to the actual engineering.The ground surface uplift along the lateral and longitudinal direction are respectively analyzed and compared with the field measured data to validate the model.The results show that a good agreement between the frost heaving prediction model and the field measured data verifies the rationality and applicability of the proposed model.The maximum uplift of the Gongbei tunnel appears at the center of the model,gradually decreasing along with the lateral and longitudinal directions.The curve in the lateral direction presents a normal distribution due to the influence of the constraint of two sides,while the one along the lateral direction shapes like a parabola with the opening downward due to the temperature field distribution.The model provides a reference for frost heaving engineering calculation.
基金supported by a grant from the National Natural Science Foundation of China(No.41671069,No.41630636)Foundation of the State Key Laboratory of Frozen Soil Engineering(SKLFSE-ZT-31)
文摘The freezing-thawing deformation behaviors of consolidated soils under high pressure have been investigated in a high-pressure-low-temperature (HPLT) Kq consolidation apparatus with a small strain sensor. The tests cover a variety of frozen soil temperatures ranging from -2℃ to -10 ℃, and a series of applied pressures ranging from 1 MPa to 5 MPa. The test results show that, for the consolidated soils under high pressure, their freezing-thawing deformation was caused by the realignment and the deformation of soil particles, the phase change of water, and the water redistribution in the soil. As for the deformation produced by thermal expansion and contraction,it is about 0.04-0.05 mm, accounting for only about 7%~9% of the total deformation. Taking the freezing-thawing deformation produced by temperature disturbance as a creep deformation, the creep models of the developing soil deformation will be determined by the soil's final temperature, i.e., the desired temperature. For the soils under a desired temperature between -2℃ and -5℃, the freezing-thawing de-formation develops according to a non-attenuation creep model; but for the soils with a desired temperature lower than -5℃, a full attenuation creep model is followed. The applied pressure and soil type also have a significant influence on the maximum freezing deformation. Generally, the greater the desired pressure applied, the less the maximum deformation is; and the loess freezing deformation is larger than that of sand.
基金supported by the National Natural Science Foundation of China (No. 50578120)the National High Technology Research and Development Program of China (863 Program) (No. 2006AA11Z118)
文摘The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method.
基金Supported by the Natural Science Foundation of China (40801032)
文摘A comprehensive and systematic research on the forcible thawing temperature field formed by a single heat transfer pipe with unsteady outer surface temperature was carried out by analytic computation according to the theory of similitude. The distribution law of thawing temperature field, calculation formulas of thawing radius b, heat flux density q and average thawing temperature T were obtained. It theoretically explains that the main influential factors of thawing radius b, heat flux density q and thawing average temperature T are K,f, Lx and co(l), but Lc affects little. Finally, based on the forcible thawing project of Hulusu air shaft lining, the field data indicate that the analytical formulas of this article are comparatively accurate.
基金This research was supported by the project of Natural Science Foundation of Fujian Province(No.2022J01925)supported by the project of the Fuzhou Science and Technology Plan Project(2021-P-047)supported by the Open Project Program Foundation of Engineering Research Center of underground mine construction,Ministry of Education(Anhui University of Science and Technology)(No.JYBGCZX2021104).
文摘This paper investigates the influence of the deviation in freeze pipe installation on the development of the frozen wall in long cross passages by numerical simulation with ANSYS software.The study case is from the artificial ground freezing project along the Fuzhou Metro Line 2 between Ziyang Station and Wuliting Station.Two freezepipe configurations,i.e.,one with perfectly aligned pipes without any deviation from design and another with randomly distributed deviation,are included for comparison.The effect of the random deviation in the freeze pipes on frozen wall interconnection time,the thickness of the frozen wall and the development of the temperature field is explored.For the characteristic section of the numerical model at a depth of 25 m,it is found that the frozen wall interconnection time under the random deviation case and no deviation case is 24 days and 18 days,respectively.The difference in the thickness of the thinnest frozen wall segment between the random deviation and no deviation cases is the largest in the early freezing stage(up to 0.75 m),which decreases with time to 0.31 m in the late freezing stage.The effects of random deviation are more significant in the early freezing stage and diminish as the freezing time increases.
文摘This paper outlines development of the thickness design of cylindrical frozen walls in artificial ground freezing (AFG). A plain strain mechanical model coupled with infinite surrounding soil and rock takes into account the frost heave ratio to investigate the influence of frost heave on the thickness design of frozen wall, and superposition method is used to solve the complicated problem of frozen wall swelling. A revised formula referred to as "Baoshen" formula has been proposed. This formula provides a convenient analytic solution for any AGF problem involving not only frost heave but also the action of surrounding soil.
基金Project supported by the National Natural Science Foundation of China (Nos. 51178336 and 51478340), the Natural Science Foundation of Zhejiang Province, China (No. LZ13E080002), and the China Ministry of Communications Construction Science & Technology Projects (No. 2013318R11300)
文摘The multi-piped freezing method is usually applied in artificial ground freezing (AGF) projects to fulfill special construction requirements, such as two-, three-, or four-piped freezing. Based on potential superposition theory, this paper gives analytical solutions to steady-state frozen temperature for two, three, and four freezing pipes with different temperatures and arranged at random. Specific solutions are derived for some particular arrangements, such as three freezing pipes in a linear arrangement with equal or unequal spacing, right and isosceles triangle arrangements, four freezing pipes in a linear arrangement with equal spacing, and rhombus and rectangle arrangements. A comparison between the analytical solutions and numerical thermal analysis shows that the analytical solutions are sufficiently precise. As a part of the theory of AGF, the analytical solutions of temperature fields for multi-piped freezing with arbitrary layouts and different temperatures of freezing pipes are approached for the first time.
基金the National Natural Science Foundation of China(Nos.50578120 and 51178336)the Science and Technology Project of the Zhejiang Department of Transportation(No.2010H02)
文摘The existing analytical formulas to calculate the temperature field distribution of artificial frozen soil walls are all based on the conditions that the surface temperatures of all freezing pipes are equivalent. In this paper, analytical solution of steady state temperature field of two freezing pipes with diferent temperatures is deduced based on thermal potential superposition method. The correctness of the analytical formulas is verified by comparing the temperature field distributions of the analytical formulas and those of the numerical simulations in the same conditions. And discussions are made to analyze the influence of some parameters on temperature field distribution of this condition.