In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts ...In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.展开更多
In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plast...In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with ...Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.展开更多
Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast de...Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast developing intelligent technologies from six basic contradictions of the war,including hiding and finding,understanding and confusion,network resilience and network degradation,hitting and intercepting,speed of action and decisionmaking,and shaping the perceptions of key crowd.On this basis,aiming at securing competitive advantage in the future,the development directions of intelligent technologies are proposed for the air and space competition.展开更多
Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recom...Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.展开更多
Electronic machines in the guise of digital computers have transformed our world―social,family,commerce,and politics―although not yet health.Each iteration spawns expectations of yet more astonishing wonders.We wait...Electronic machines in the guise of digital computers have transformed our world―social,family,commerce,and politics―although not yet health.Each iteration spawns expectations of yet more astonishing wonders.We wait for the next unbelievable invention to fall into our lap,possibly without limit.How realistic is this?What are the limits,and have we now reached them?A recent survey in The Economist suggests that we have.It describes cycles of misery,where inflated expectations are inevitably followed,a few years later,by disillusion.Yet another Artificial Intelligence(AI)winter is coming―“After years of hype,many people feel AI has failed to deliver”.The current paper not only explains why this was bound to happen,but offers a clear and simple pathway as to how to avoid it happening again.Costly investments in time and effort can only show solid,reliable benefits when full weight is given to the fundamental binary nature of the digital machine,and to the equally unique human faculty of‘intent’.‘Intent’is not easy to define;it suffers acutely from verbal fuzziness―a point made extensively in two earlier papers:“The scientific evidence that‘intent’is vital for healthcare”and“Why Quakerism is more scientific than Einstein”.This paper argues that by putting‘intent’centre stage,first healthcare,and then democracy can be rescued.Suppose every medical consultation were supported by realistic data usage?What if,using only your existing smartphone,your entire medical history were scanned,and instantly compared,within microseconds,with up-to-the-minute information on contraindications and efficacy,from around the globe,for the actual drug you were about to receive,before you actually received it?This is real-time retrieval of clinical data―it increases the security of both doctor and patient,in a way that is otherwise unachievable.My 1980 Ph.D.thesis extolled the merits of digitising the medical record―and,just as digitisation has changed our use of audio and video beyond recognition,so a data-rich medical consultation is unprecedented―prepare to be surprised.This paper has four sections:(1)where binaries help;(2)where binaries ensure extinction;(3)computers in healthcare and civilisation;and(4)data-rich doctoring.Health is vital for economic success,as the current pandemic demonstrates,inescapably.Politics,too,is routinely corrupted―unless we rectify both,failures in AI will be the least of our troubles.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi...Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.展开更多
Legacy-based threat detection systems have not been able to keep up with the exponential growth in scope, frequency, and effect of cybersecurity threats. Artificial intelligence is being used as a result to help with ...Legacy-based threat detection systems have not been able to keep up with the exponential growth in scope, frequency, and effect of cybersecurity threats. Artificial intelligence is being used as a result to help with the issue. This paper’s primary goal is to examine how African nations are utilizing artificial intelligence to defend their infrastructure against cyberattacks. Artificial intelligence (AI) systems will make decisions that impact Africa’s future. The lack of technical expertise, the labor pool, financial resources, data limitations, uncertainty, lack of structured data, absence of government policies, ethics, user attitudes, insufficient investment in research and development, and the requirement for more adaptable and dynamic regulatory systems all pose obstacles to the adoption of AI technologies in Africa. The paper discusses how African countries are adopting artificial intelligence solutions for cybersecurity. And it shows the impact of AI to identify shadow data, monitor for abnormalities in data access and alert cyber security professionals about potential threats by anyone accessing the data or sensitive information saving valuable time in detecting and remediating issues in real-time. The study finds that 69.16% of African companies are implementing information security strategies and of these, 45% said they use technologies based on AI algorithms. This study finds that a large number of African businesses use tools that can track and analyze user behaviour in designated areas and spot anomalies, such as new users, strange IP addresses and login activity, changes to permissions on files, folders, and other resources, and the copying or erasure of massive amounts of data. Thus, we discover that just 18.18% of the target has no national cybersecurity strategy or policy. The study proposes using big data security analytics to integrate AI. Adopting it would be beneficial for all African nations, as it provides a range of cyberattack defense techniques.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
The hypothesis of behavioral parameters dependence measured from person’s head movements in quasi-stationary state on COVID-19 disease is discussed. Method for determining the dependence of vestibular-emotional refle...The hypothesis of behavioral parameters dependence measured from person’s head movements in quasi-stationary state on COVID-19 disease is discussed. Method for determining the dependence of vestibular-emotional reflex parameters on COVID-19, various diseases and pathologies are proposed. Micro-movements of a head for representatives of the control group (with a confirmed absence of COVID-19 disease) and a group of patients with a confirmed diagnosis of COVID-19 were studied using vibraimage technology. Parameters and criteria for the diagnosis of COVID-19 for training artificial intelligence (AI) on the control group and the patient group are proposed. 3-layer (one hidden layer) feedforward neural network (40 + 20 + 1 sigmoid neurons) was developed for AI training. AI was firstly trained on the primary sample of patients and a control group. Study of a random sample of people with trained AI was carried out and the possibility of detecting COVID-19 using the proposed method was proved a week before the onset of clinical symptoms of the disease. Number of COVID-19 diagnostic parameters was increased to 26 and AI was trained on a sample of 536 measurements, 268 patient measurement results and 268 measurement results in the control group. The achieved diagnostic accuracy was more than 99%, 4 errors per 536 measurements (2 false positive and 2 false negative), specificity 99.25% and sensitivity 99.25%. The issues of improving the accuracy and reliability of the proposed method for diagnosing COVID-19 are discussed. Further ways to improve the characteristics and applicability of the proposed method of diagnosis and self-diagnosis of COVID-19 are outlined.展开更多
This research service provides an original perspective on how artificial intelligence(AI)is making its way into the retail sector.Retail has entered a new era where ECommerce and technology bellwethers like Alibaba,Am...This research service provides an original perspective on how artificial intelligence(AI)is making its way into the retail sector.Retail has entered a new era where ECommerce and technology bellwethers like Alibaba,Amazon,Apple,Baidu,Facebook,Google,Microsoft,and Tencent have raised consumers’expectations.AI is enabling automated decision-making with accuracy and speed,based on data analytics,coupled with selflearning abilities.The retail sector has witnessed the dramatic evolution with the rapid digitalization of communication(i.e.Internet)and;smart phones and devices.Customer is no longer the same as they became more empowered by smart devices which has entirely prevailed their expectation,habits,style of shopping and investigating the shops.This article outlines the Significant innovation done in retails which helped them to evolve such as Artificial Intelligence(AI),Big data and Internet of Things(IoT),Chatbots,Robots.This article further also discusses the ideology of various author on how AI become more profitable and a close asset to customers and retailers.展开更多
Artificial Intelligence (AI) experienced significant advancements in recent years, and its potential power is already recognized across various industries. Yet, the rise of AI has led to a growing concern about its im...Artificial Intelligence (AI) experienced significant advancements in recent years, and its potential power is already recognized across various industries. Yet, the rise of AI has led to a growing concern about its impact on meeting the Sustainable Development Goals (SDGs). The aim of this paper was to evaluate contributions and the potential influence of AI to sustainable development in the society domain. Furthermore, the study analyzed GPT-3 responses, as one of the largest language models developed by OpenAI, descriptively. We conducted a set of queries on the SDGs to gather information on GPT-3’s perceptions of AI impact on sustainable development. Analysis of GPT-3’s contribution potential towards the SDGs showcased its broad range of capabilities for contributing to the SDGs in areas such as education, health, and communication. The study findings provide valuable insights into the contributions of AI to sustainable development in the society domain and highlight the importance of proper regulations to promote the responsible use of AI for sustainable development. We highlighted the potential for improvement in neural language processing skills of GPT-3 by avoiding imitating weak human writing styles with more mistakes in longer texts.展开更多
Background: The medical imaging world is currently changing with the introduction of advanced modalities to help with diagnosis. There is then the need for the application of Artificial Intelligence (AI) in areas such...Background: The medical imaging world is currently changing with the introduction of advanced modalities to help with diagnosis. There is then the need for the application of Artificial Intelligence (AI) in areas such as radiation protection to improve the safety as far as radiations are concerned. This review article discusses the principles, some of the challenges of radiation protection and the possible role of Artificial Intelligence (AI) regarding radiation protection in computed tomography and fluoroscopy exams. Methods: A literature search was done using Google Scholar, Science Direct and Pubmed to search for relevant articles concerning the review topic. Results: Some of the challenges identified were outdated and old X-ray machines, lack of QA programs on the machines amongst others. It was discovered that AI could be applied in areas like scan planning and positioning, patient positioning amongst others in CT imaging to reduce radiation doses. With fluoroscopy, an AI enabled system helped in reducing radiation doses by selecting the region of interest of pathology and exposing that region. Conclusion: The application of AI will improve safety and standards of practice in medical imaging.展开更多
基金Supported by Research Project of Postgraduate Education and Teaching Reform in Jilin Province in 2023(JJKH20230060YJG)Research Project of Teaching Reform of Vocational Education and Adult Education in Jilin Province(2022ZCY295)+5 种基金Scientific Research Project of Higher Education in Jilin Province in 2023(JGJX2023D200)Research Project of Teaching Reform of Higher Education in 2023(XJSX202301)Research Project of Teaching Reform of Higher Education in 2023(XJ202303)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ04)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ01)Provincial College Students Innovation and Entrepreneurship Project(S202310199042&S202310199043).
文摘In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.
文摘In this work,we have developed a novel machine(deep)learning computational framework to determine and identify damage loading parameters(conditions)for structures and materials based on the permanent or residual plastic deformation distribution or damage state of the structure.We have shown that the developed machine learning algorithm can accurately and(practically)uniquely identify both prior static as well as impact loading conditions in an inverse manner,based on the residual plastic strain and plastic deformation as forensic signatures.The paper presents the detailed machine learning algorithm,data acquisition and learning processes,and validation/verification examples.This development may have significant impacts on forensic material analysis and structure failure analysis,and it provides a powerful tool for material and structure forensic diagnosis,determination,and identification of damage loading conditions in accidental failure events,such as car crashes and infrastructure or building structure collapses.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
基金Supported by the Dean Responsible Project of Gansu Medical College,No.GY-2023FZZ01University Teachers Innovation Fund Project of Gansu Province,No.2023A-182and Key Research Project of Pingliang Science and Technology,No.PL-STK-2021A-004.
文摘Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.
文摘Air and space is one of the most intense fields of science and technology competition for powerful countries.This paper focuses on the competition to achieve mastery of air and space,and analyzes the impact of fast developing intelligent technologies from six basic contradictions of the war,including hiding and finding,understanding and confusion,network resilience and network degradation,hitting and intercepting,speed of action and decisionmaking,and shaping the perceptions of key crowd.On this basis,aiming at securing competitive advantage in the future,the development directions of intelligent technologies are proposed for the air and space competition.
文摘Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.
文摘Electronic machines in the guise of digital computers have transformed our world―social,family,commerce,and politics―although not yet health.Each iteration spawns expectations of yet more astonishing wonders.We wait for the next unbelievable invention to fall into our lap,possibly without limit.How realistic is this?What are the limits,and have we now reached them?A recent survey in The Economist suggests that we have.It describes cycles of misery,where inflated expectations are inevitably followed,a few years later,by disillusion.Yet another Artificial Intelligence(AI)winter is coming―“After years of hype,many people feel AI has failed to deliver”.The current paper not only explains why this was bound to happen,but offers a clear and simple pathway as to how to avoid it happening again.Costly investments in time and effort can only show solid,reliable benefits when full weight is given to the fundamental binary nature of the digital machine,and to the equally unique human faculty of‘intent’.‘Intent’is not easy to define;it suffers acutely from verbal fuzziness―a point made extensively in two earlier papers:“The scientific evidence that‘intent’is vital for healthcare”and“Why Quakerism is more scientific than Einstein”.This paper argues that by putting‘intent’centre stage,first healthcare,and then democracy can be rescued.Suppose every medical consultation were supported by realistic data usage?What if,using only your existing smartphone,your entire medical history were scanned,and instantly compared,within microseconds,with up-to-the-minute information on contraindications and efficacy,from around the globe,for the actual drug you were about to receive,before you actually received it?This is real-time retrieval of clinical data―it increases the security of both doctor and patient,in a way that is otherwise unachievable.My 1980 Ph.D.thesis extolled the merits of digitising the medical record―and,just as digitisation has changed our use of audio and video beyond recognition,so a data-rich medical consultation is unprecedented―prepare to be surprised.This paper has four sections:(1)where binaries help;(2)where binaries ensure extinction;(3)computers in healthcare and civilisation;and(4)data-rich doctoring.Health is vital for economic success,as the current pandemic demonstrates,inescapably.Politics,too,is routinely corrupted―unless we rectify both,failures in AI will be the least of our troubles.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
文摘Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.
文摘Legacy-based threat detection systems have not been able to keep up with the exponential growth in scope, frequency, and effect of cybersecurity threats. Artificial intelligence is being used as a result to help with the issue. This paper’s primary goal is to examine how African nations are utilizing artificial intelligence to defend their infrastructure against cyberattacks. Artificial intelligence (AI) systems will make decisions that impact Africa’s future. The lack of technical expertise, the labor pool, financial resources, data limitations, uncertainty, lack of structured data, absence of government policies, ethics, user attitudes, insufficient investment in research and development, and the requirement for more adaptable and dynamic regulatory systems all pose obstacles to the adoption of AI technologies in Africa. The paper discusses how African countries are adopting artificial intelligence solutions for cybersecurity. And it shows the impact of AI to identify shadow data, monitor for abnormalities in data access and alert cyber security professionals about potential threats by anyone accessing the data or sensitive information saving valuable time in detecting and remediating issues in real-time. The study finds that 69.16% of African companies are implementing information security strategies and of these, 45% said they use technologies based on AI algorithms. This study finds that a large number of African businesses use tools that can track and analyze user behaviour in designated areas and spot anomalies, such as new users, strange IP addresses and login activity, changes to permissions on files, folders, and other resources, and the copying or erasure of massive amounts of data. Thus, we discover that just 18.18% of the target has no national cybersecurity strategy or policy. The study proposes using big data security analytics to integrate AI. Adopting it would be beneficial for all African nations, as it provides a range of cyberattack defense techniques.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
文摘The hypothesis of behavioral parameters dependence measured from person’s head movements in quasi-stationary state on COVID-19 disease is discussed. Method for determining the dependence of vestibular-emotional reflex parameters on COVID-19, various diseases and pathologies are proposed. Micro-movements of a head for representatives of the control group (with a confirmed absence of COVID-19 disease) and a group of patients with a confirmed diagnosis of COVID-19 were studied using vibraimage technology. Parameters and criteria for the diagnosis of COVID-19 for training artificial intelligence (AI) on the control group and the patient group are proposed. 3-layer (one hidden layer) feedforward neural network (40 + 20 + 1 sigmoid neurons) was developed for AI training. AI was firstly trained on the primary sample of patients and a control group. Study of a random sample of people with trained AI was carried out and the possibility of detecting COVID-19 using the proposed method was proved a week before the onset of clinical symptoms of the disease. Number of COVID-19 diagnostic parameters was increased to 26 and AI was trained on a sample of 536 measurements, 268 patient measurement results and 268 measurement results in the control group. The achieved diagnostic accuracy was more than 99%, 4 errors per 536 measurements (2 false positive and 2 false negative), specificity 99.25% and sensitivity 99.25%. The issues of improving the accuracy and reliability of the proposed method for diagnosing COVID-19 are discussed. Further ways to improve the characteristics and applicability of the proposed method of diagnosis and self-diagnosis of COVID-19 are outlined.
文摘This research service provides an original perspective on how artificial intelligence(AI)is making its way into the retail sector.Retail has entered a new era where ECommerce and technology bellwethers like Alibaba,Amazon,Apple,Baidu,Facebook,Google,Microsoft,and Tencent have raised consumers’expectations.AI is enabling automated decision-making with accuracy and speed,based on data analytics,coupled with selflearning abilities.The retail sector has witnessed the dramatic evolution with the rapid digitalization of communication(i.e.Internet)and;smart phones and devices.Customer is no longer the same as they became more empowered by smart devices which has entirely prevailed their expectation,habits,style of shopping and investigating the shops.This article outlines the Significant innovation done in retails which helped them to evolve such as Artificial Intelligence(AI),Big data and Internet of Things(IoT),Chatbots,Robots.This article further also discusses the ideology of various author on how AI become more profitable and a close asset to customers and retailers.
文摘Artificial Intelligence (AI) experienced significant advancements in recent years, and its potential power is already recognized across various industries. Yet, the rise of AI has led to a growing concern about its impact on meeting the Sustainable Development Goals (SDGs). The aim of this paper was to evaluate contributions and the potential influence of AI to sustainable development in the society domain. Furthermore, the study analyzed GPT-3 responses, as one of the largest language models developed by OpenAI, descriptively. We conducted a set of queries on the SDGs to gather information on GPT-3’s perceptions of AI impact on sustainable development. Analysis of GPT-3’s contribution potential towards the SDGs showcased its broad range of capabilities for contributing to the SDGs in areas such as education, health, and communication. The study findings provide valuable insights into the contributions of AI to sustainable development in the society domain and highlight the importance of proper regulations to promote the responsible use of AI for sustainable development. We highlighted the potential for improvement in neural language processing skills of GPT-3 by avoiding imitating weak human writing styles with more mistakes in longer texts.
文摘Background: The medical imaging world is currently changing with the introduction of advanced modalities to help with diagnosis. There is then the need for the application of Artificial Intelligence (AI) in areas such as radiation protection to improve the safety as far as radiations are concerned. This review article discusses the principles, some of the challenges of radiation protection and the possible role of Artificial Intelligence (AI) regarding radiation protection in computed tomography and fluoroscopy exams. Methods: A literature search was done using Google Scholar, Science Direct and Pubmed to search for relevant articles concerning the review topic. Results: Some of the challenges identified were outdated and old X-ray machines, lack of QA programs on the machines amongst others. It was discovered that AI could be applied in areas like scan planning and positioning, patient positioning amongst others in CT imaging to reduce radiation doses. With fluoroscopy, an AI enabled system helped in reducing radiation doses by selecting the region of interest of pathology and exposing that region. Conclusion: The application of AI will improve safety and standards of practice in medical imaging.