This paper presents a kind of artificial intelligent system-generalized computing system (GCS for short), and introduces its mathematical description, implement problem and learning problem.
Prediction of indoor airflow distribution often relies on high-fidelity,computationally intensive computational fluid dynamics(CFD)simulations.Artificial intelligence(Al)models trained by CFD data can be used for fast...Prediction of indoor airflow distribution often relies on high-fidelity,computationally intensive computational fluid dynamics(CFD)simulations.Artificial intelligence(Al)models trained by CFD data can be used for fast and accurate prediction of indoor airflow,but current methods have limitations,such as only predicting limited outputs rather than the entire flow field.Furthermore,conventional Al models are not always designed to predict different outputs based on a continuous input range,and instead make predictions for one or a few discrete inputs.This work addresses these gaps using a conditional generative adversarial network(CGAN)model approach,which is inspired by current state-of-the-art Al for synthetic image generation.We create a new Boundary Condition CGAN(BC-CGAN)model by extending the original CGAN model to generate 2D airflow distribution images based on a continuous input parameter,such as a boundary condition.Additionally,we design a novel feature-driven algorithm to strategically generate training data,with the goal of minimizing the amount of computationally expensive data while ensuring training quality of the Al model.The BC-CGAN model is evaluated for two benchmark airflow cases:an isothermal lid-driven cavity flow and a non-isothermal mixed convection flow with a heated box.We also investigate the performance of the BC-CGAN models when training is stopped based on different levels of validation error criteria.The results show that the trained BC-CGAN model can predict the 2D distribution of velocity and temperature with less than 5%relative error and up to about 75,ooo times faster when compared to reference CFD simulations.The proposed feature-driven algorithm shows potential for reducing the amount of data and epochs required to train the Al models while maintaining prediction accuracy,particularly when the flow changes non-linearlywith respectto an input.展开更多
目的对人工智能在设计领域的应用进行梳理与总结,分析当下人工智能对设计流程和设计师的影响,展望未来人工智能对设计行业的影响趋势。方法使用VOSviewer工具和文献计量法对Web of Science数据库中关于“人工智能在设计领域的创新与应...目的对人工智能在设计领域的应用进行梳理与总结,分析当下人工智能对设计流程和设计师的影响,展望未来人工智能对设计行业的影响趋势。方法使用VOSviewer工具和文献计量法对Web of Science数据库中关于“人工智能在设计领域的创新与应用”的文献进行详细的可视化和聚类分析,深入探讨文献中的核心观点和案例。结果基于四个主要聚类(AI+技术应用、AI+设计流程、AI+创意协作、AI+影响反思)来展开讨论。特别关注生成式人工智能(AIGC)技术对设计方法和设计流程的影响,指出生成式人工智能在促进设计创新和提升设计效率方面发挥着至关重要的作用。此外,生成式人工智能对设计师的传统角色及设计原创性提出了新的挑战并重新定义需求。预测未来人工智能将进一步整合进设计流程,促进设计创新,更加关注人工智能的原创性、责任边界问题,探讨人工智能与设计师合作的新模式。结论通过对人工智能在设计领域应用的全面综述,为未来设计创新与人工智能融合提供了有价值的理论参考和发展方向。展开更多
文摘This paper presents a kind of artificial intelligent system-generalized computing system (GCS for short), and introduces its mathematical description, implement problem and learning problem.
基金supported in part by the U.S.Defense Threat Reduction Agency and performed under U.S.Department of Energy Contract No.DE-AC02-05CH11231supported by the National Science Foundation under Awards No.IIS-1802017,CBET-2217410,CNS-2025377,CNS-2241361.
文摘Prediction of indoor airflow distribution often relies on high-fidelity,computationally intensive computational fluid dynamics(CFD)simulations.Artificial intelligence(Al)models trained by CFD data can be used for fast and accurate prediction of indoor airflow,but current methods have limitations,such as only predicting limited outputs rather than the entire flow field.Furthermore,conventional Al models are not always designed to predict different outputs based on a continuous input range,and instead make predictions for one or a few discrete inputs.This work addresses these gaps using a conditional generative adversarial network(CGAN)model approach,which is inspired by current state-of-the-art Al for synthetic image generation.We create a new Boundary Condition CGAN(BC-CGAN)model by extending the original CGAN model to generate 2D airflow distribution images based on a continuous input parameter,such as a boundary condition.Additionally,we design a novel feature-driven algorithm to strategically generate training data,with the goal of minimizing the amount of computationally expensive data while ensuring training quality of the Al model.The BC-CGAN model is evaluated for two benchmark airflow cases:an isothermal lid-driven cavity flow and a non-isothermal mixed convection flow with a heated box.We also investigate the performance of the BC-CGAN models when training is stopped based on different levels of validation error criteria.The results show that the trained BC-CGAN model can predict the 2D distribution of velocity and temperature with less than 5%relative error and up to about 75,ooo times faster when compared to reference CFD simulations.The proposed feature-driven algorithm shows potential for reducing the amount of data and epochs required to train the Al models while maintaining prediction accuracy,particularly when the flow changes non-linearlywith respectto an input.
文摘目的对人工智能在设计领域的应用进行梳理与总结,分析当下人工智能对设计流程和设计师的影响,展望未来人工智能对设计行业的影响趋势。方法使用VOSviewer工具和文献计量法对Web of Science数据库中关于“人工智能在设计领域的创新与应用”的文献进行详细的可视化和聚类分析,深入探讨文献中的核心观点和案例。结果基于四个主要聚类(AI+技术应用、AI+设计流程、AI+创意协作、AI+影响反思)来展开讨论。特别关注生成式人工智能(AIGC)技术对设计方法和设计流程的影响,指出生成式人工智能在促进设计创新和提升设计效率方面发挥着至关重要的作用。此外,生成式人工智能对设计师的传统角色及设计原创性提出了新的挑战并重新定义需求。预测未来人工智能将进一步整合进设计流程,促进设计创新,更加关注人工智能的原创性、责任边界问题,探讨人工智能与设计师合作的新模式。结论通过对人工智能在设计领域应用的全面综述,为未来设计创新与人工智能融合提供了有价值的理论参考和发展方向。