This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys.The challenges for biomedical engineering inv...This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys.The challenges for biomedical engineering involved in overcoming the potential difficulties are showcased,as well as the importance of interdisciplinary collaboration in this marriage of medicine and technology.In this review,modern artificial kidneys and the research efforts trying to provide and promise artificial kidneys are presented.But what are the problems faced by each technology and to what extent is the effort enough to date?展开更多
Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable ...Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.展开更多
The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal fu...The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal function.Herein,we proposed a novel strategy of thin-film nanofibrous composite(TNFC)dialysis membrane combined with reduced graphene oxide(rGO)aerogel adsorbents for clinical removal of IS as well as high retention of proteins.The TFNC membrane was prepared by electrospinning in conjunction with coating-reaction method and proved to have good selectivity and permeability.To further improve the removal rate of toxins,we used a medium hydrothermal method following by freeze-drying treatment to obtain the r GO aerogel adsorbents.It exhibited excellent adsorption for IS with a maximum adsorption capacity of 69.40 mg·g^(-1)throughπ-πinteraction and hydrogen bonding interaction based on Langmuir isotherm models.Time-dependent absorption experiments showed that it reached adsorption equilibrium within 4 h,which was matched with the hemodialysis time.The coordination was significantly exhibited by introducing r GO aerogel blocks into the dialysate for absorbing the diffused free IS during hemodialysis.Taking the advantages of the TFNC dialysis membrane and the rGO aerogel,the volume of dialysate for hemodialysis was only one-tenth of that without adsorbent blocks but with very comparable dialysis performance(the clearance of IS at 51.8%and the retention of HSA over 98%),which could lighten conventional hemodialysis effectively and be benefit to realize the miniaturization of the hemodialysis equipment.Therefore,the coordination of the TFNC dialysis membrane and rGO aerogel adsorbents would open a new path for the development of portable artificial kidney.展开更多
文摘This review aims to present the developments occurring in the field of artificial organs and particularly focuses on the presentation of developments in artificial kidneys.The challenges for biomedical engineering involved in overcoming the potential difficulties are showcased,as well as the importance of interdisciplinary collaboration in this marriage of medicine and technology.In this review,modern artificial kidneys and the research efforts trying to provide and promise artificial kidneys are presented.But what are the problems faced by each technology and to what extent is the effort enough to date?
基金The project supported by the National Natural Science Foundation of China (5016016) and Natural Science Foundation of AnhuiProvince(03043717)
文摘Based on the one-dimensional and unsteady-state Krogh model, this paper investigates mass transfer of artificial kidney under three blood cycle modes during the course of hemodialysis. The variations of the permeable solute clearance with increasing time and the dialysis time with increasing blood flux are simulated in detail,and then one optimal blood cycle mode is acquired. The results are very important to improve the clinical dialysis efficiency of artificial kidney.
基金supported by the Fundamental Research Funds for the Central Universities(2232020A-04)Natural Science Foundation of Shanghai City(19ZR1401300)。
文摘The protein-bound uremic toxins,represented by indoxyl sulfate(IS),have been associated with the progression of chronic kidney disease and the development of cardiovascular disease in the presence of impaired renal function.Herein,we proposed a novel strategy of thin-film nanofibrous composite(TNFC)dialysis membrane combined with reduced graphene oxide(rGO)aerogel adsorbents for clinical removal of IS as well as high retention of proteins.The TFNC membrane was prepared by electrospinning in conjunction with coating-reaction method and proved to have good selectivity and permeability.To further improve the removal rate of toxins,we used a medium hydrothermal method following by freeze-drying treatment to obtain the r GO aerogel adsorbents.It exhibited excellent adsorption for IS with a maximum adsorption capacity of 69.40 mg·g^(-1)throughπ-πinteraction and hydrogen bonding interaction based on Langmuir isotherm models.Time-dependent absorption experiments showed that it reached adsorption equilibrium within 4 h,which was matched with the hemodialysis time.The coordination was significantly exhibited by introducing r GO aerogel blocks into the dialysate for absorbing the diffused free IS during hemodialysis.Taking the advantages of the TFNC dialysis membrane and the rGO aerogel,the volume of dialysate for hemodialysis was only one-tenth of that without adsorbent blocks but with very comparable dialysis performance(the clearance of IS at 51.8%and the retention of HSA over 98%),which could lighten conventional hemodialysis effectively and be benefit to realize the miniaturization of the hemodialysis equipment.Therefore,the coordination of the TFNC dialysis membrane and rGO aerogel adsorbents would open a new path for the development of portable artificial kidney.