Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought conveni...Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology.展开更多
The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and ...The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment.展开更多
With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generat...With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.展开更多
Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi...Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.展开更多
This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strateg...This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.展开更多
The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and ...The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.展开更多
In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technolog...In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technologies such as big models and generative artificial intelligence has become a hot research issue.In this regard,this paper briefly analyzes the industrial Internet security technology and application from the perspective of generative artificial intelligence,hoping to provide some valuable reference and reference for readers.展开更多
This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,in...This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,including auxiliary use of generative artificial intelligence tools,primary focus on humanistic education,and the re-production of knowledge,aiming to foster students’critical thinking,collaborative skills,and creativity.Building on this foundation,the study delves into generative artificial intelligence tools applicable to different stages of process-genre writing and their strategic applications.The use of generative artificial intelligence tools is beneficial for students to present,discuss,and share writing content,encouraging them to enhance their writing,collaboration,critical thinking,and creative abilities through deep interaction with model essays and creative discourses.展开更多
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ...Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.展开更多
Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have rev...Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.展开更多
In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),...While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.展开更多
The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated...The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.展开更多
This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Cl...This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.展开更多
Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review...Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review is to assess and analyze the use of AI and its use in orthopedic practice, as well as its applications, limitations, and pitfalls. Methods: A review of all relevant databases such as EMBASE, Cochrane Database of Systematic Reviews, MEDLINE, Science Citation Index, Scopus, and Web of Science with keywords of AI, orthopedic surgery, applications, and drawbacks. All related articles on AI and orthopaedic practice were reviewed. A total of 3210 articles were included in the review. Results: The data from 351 studies were analyzed where in orthopedic surgery. AI is being used for diagnostic procedures, radiological diagnosis, models of clinical care, and utilization of hospital and bed resources. AI has also taken a chunk of share in assisted robotic orthopaedic surgery. Conclusions: AI has now become part of the orthopedic practice and will further increase its stake in the healthcare industry. Nonetheless, clinicians should remain aware of AI’s serious limitations and pitfalls and consider the drawbacks and errors in its use.展开更多
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili...Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.展开更多
Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(M...Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being.展开更多
Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s arti...Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies.展开更多
Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorit...Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.展开更多
Along with the development of 5G network and Internet of Things technologies,there has been an explosion in personalized healthcare systems.When the 5G and Artificial Intelligence(Al)is introduced into diabetes manage...Along with the development of 5G network and Internet of Things technologies,there has been an explosion in personalized healthcare systems.When the 5G and Artificial Intelligence(Al)is introduced into diabetes management architecture,it can increase the efficiency of existing systems and complications of diabetes can be handled more effectively by taking advantage of 5G.In this article,we propose a 5G-based Artificial Intelligence Diabetes Management architecture(AIDM),which can help physicians and patients to manage both acute complications and chronic complications.The AIDM contains five layers:the sensing layer,the transmission layer,the storage layer,the computing layer,and the application layer.We build a test bed for the transmission and application layers.Specifically,we apply a delay-aware RA optimization based on a double-queue model to improve access efficiency in smart hospital wards in the transmission layer.In application layer,we build a prediction model using a deep forest algorithm.Results on real-world data show that our AIDM can enhance the efficiency of diabetes management and improve the screening rate of diabetes as well.展开更多
文摘Rapid advancement in science and technology has seen computer network technology being upgraded constantly, and computer technology, in particular, has been applied more and more extensively, which has brought convenience to people’s lives. The number of people using the internet around the globe has also increased significantly, exerting a profound influence on artificial intelligence. Further, the constant upgrading and development of artificial intelligence has led to the continuous innovation and improvement of computer technology. Countries around the world have also registered an increase in investment, paying more attention to artificial intelligence. Through an analysis of the current development situation and the existing applications of artificial intelligence, this paper explicates the role of artificial intelligence in the face of the unceasing expansion of computer network technology.
基金supported by theCONAHCYT(Consejo Nacional deHumanidades,Ciencias y Tecnologias).
文摘The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment.
文摘With the digital transformation of global education and China's emphasis on education digital,generative AI technology has been widely used in the field of higher education.In this paper,the development of generative AI technology and its potential in personalized learning,interactive content creation and adaptive assessment in education were introduced firstly.Then,the application case of generative AI tools in teaching content creation,scenario-based teaching content development,visual teaching content development,complex concept deconstruction and analogy,student-led application practice and other aspects in the teaching of Building Decoration Materials was discussed.Through the teaching experiment and effect evaluation,the positive influence of generative AI technology on the improvement of students'learning effect and teaching efficiency was verified.Finally,some thoughts and inspirations on the combination of educational theory and generative AI technology,the integration of teaching design and generative AI technology,and the practice cases and effect evaluation were put forward,and the importance of teacher role transformation and personalized learning path design was emphasized to provide theoretical and practical support for the innovative development of higher education.
文摘Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.
基金General Project of Philosophy and Social Science Research in Jiangsu Universities in 2024“Research on the Mining and Integration Strategy of Ideological and Political Elements in Business English Major Courses”(2024SISZ0787)。
文摘This study explores the impact of generative artificial intelligence(AI)-enabled instruction on critical thinking in English essay writing among 1,050 first-year English majors across four colleges.Pedagogical strategies,including facilitating critical responses and emphasizing real-world application,are identified to enhance generative AI’s impact.Both qualitative and quantitative analyses reveal significant post-intervention improvements in critical thinking skills.This research contributes to understanding how generative AI can effectively foster critical thinking in educational settings.
文摘The emergence of generative artificial intelligence(AI)has had a huge impact on all areas of life,including the field of education.AI can assist teachers in cultivating talents and promoting personalized learning and teaching,but it also prevents individuals from thinking independently and creatively.In the era of generative AI,the rapid development of technology and its significant impact on the field of education are inevitable.There are many educational issues related to it,such as teaching methods,student training goals,teaching philosophy and purposes,and other educational issues,that require re-conceptualization and review.
文摘In recent years,artificial intelligence technology has developed rapidly around the world is widely used in various fields,and plays an important role.The integration of industrial Internet security with new technologies such as big models and generative artificial intelligence has become a hot research issue.In this regard,this paper briefly analyzes the industrial Internet security technology and application from the perspective of generative artificial intelligence,hoping to provide some valuable reference and reference for readers.
文摘This study,drawing on the commonalities between generative artificial intelligence and foreign language writing instruction,outlines the core ideology of digital humanities-based college English writing instruction,including auxiliary use of generative artificial intelligence tools,primary focus on humanistic education,and the re-production of knowledge,aiming to foster students’critical thinking,collaborative skills,and creativity.Building on this foundation,the study delves into generative artificial intelligence tools applicable to different stages of process-genre writing and their strategic applications.The use of generative artificial intelligence tools is beneficial for students to present,discuss,and share writing content,encouraging them to enhance their writing,collaboration,critical thinking,and creative abilities through deep interaction with model essays and creative discourses.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)and STEP(Grant No.2019QZKK0102)supported by the Korea Environmental Industry&Technology Institute(KEITI)through the“Project for developing an observation-based GHG emissions geospatial information map”,funded by the Korea Ministry of Environment(MOE)(Grant No.RS-2023-00232066).
文摘Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal.
基金supported by a grant from the Standardization and Integration of Resources Information for Seed-cluster in Hub-Spoke Material Bank Program,Rural Development Administration,Republic of Korea(PJ01587004).
文摘Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.Recent advancements in high-throughput phenotyping(HTP)technologies and artificial intelligence(AI)have revolutionized the field,enabling rapid and accurate assessment of crop traits on a large scale.The integration of AI and machine learning algorithms with HTP data has unlocked new opportunities for crop improvement.AI algorithms can analyze and interpret large datasets,and extract meaningful patterns and correlations between phenotypic traits and genetic factors.These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection,thereby reducing the time and cost required for variety development.However,further research and collaboration are needed to overcome the existing challenges and fully unlock the power of HTP and AI in crop improvement.By leveraging AI algorithms,researchers can efficiently analyze phenotypic data,uncover complex patterns,and establish predictive models that enable precise trait selection and crop breeding.The aim of this review is to explore the transformative potential of integrating HTP and AI in crop improvement.This review will encompass an in-depth analysis of recent advances and applications,highlighting the numerous benefits and challenges associated with HTP and AI.
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
文摘While emerging technologies such as the Internet of Things(IoT)have many benefits,they also pose considerable security challenges that require innovative solutions,including those based on artificial intelligence(AI),given that these techniques are increasingly being used by malicious actors to compromise IoT systems.Although an ample body of research focusing on conventional AI methods exists,there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures.To contribute to this nascent research stream,a novel AI-driven security system denoted as“AI2AI”is presented in this work.AI2AI employs AI techniques to enhance the performance and optimize security mechanisms within the IoT framework.We also introduce the Genetic Algorithm Anomaly Detection and Prevention Deep Neural Networks(GAADPSDNN)sys-tem that can be implemented to effectively identify,detect,and prevent cyberattacks targeting IoT devices.Notably,this system demonstrates adaptability to both federated and centralized learning environments,accommodating a wide array of IoT devices.Our evaluation of the GAADPSDNN system using the recently complied WUSTL-IIoT and Edge-IIoT datasets underscores its efficacy.Achieving an impressive overall accuracy of 98.18%on the Edge-IIoT dataset,the GAADPSDNN outperforms the standard deep neural network(DNN)classifier with 94.11%accuracy.Furthermore,with the proposed enhancements,the accuracy of the unoptimized random forest classifier(80.89%)is improved to 93.51%,while the overall accuracy(98.18%)surpasses the results(93.91%,94.67%,94.94%,and 94.96%)achieved when alternative systems based on diverse optimization techniques and the same dataset are employed.The proposed optimization techniques increase the effectiveness of the anomaly detection system by efficiently achieving high accuracy and reducing the computational load on IoT devices through the adaptive selection of active features.
文摘The Industrial Internet of Things(IIoT)has brought numerous benefits,such as improved efficiency,smart analytics,and increased automation.However,it also exposes connected devices,users,applications,and data generated to cyber security threats that need to be addressed.This work investigates hybrid cyber threats(HCTs),which are now working on an entirely new level with the increasingly adopted IIoT.This work focuses on emerging methods to model,detect,and defend against hybrid cyber attacks using machine learning(ML)techniques.Specifically,a novel ML-based HCT modelling and analysis framework was proposed,in which L1 regularisation and Random Forest were used to cluster features and analyse the importance and impact of each feature in both individual threats and HCTs.A grey relation analysis-based model was employed to construct the correlation between IIoT components and different threats.
文摘This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture.
文摘Background: The growth and use of Artificial Intelligence (AI) in the medical field is rapidly rising. AI is exhibiting a practical tool in the healthcare industry in patient care. The objective of this current review is to assess and analyze the use of AI and its use in orthopedic practice, as well as its applications, limitations, and pitfalls. Methods: A review of all relevant databases such as EMBASE, Cochrane Database of Systematic Reviews, MEDLINE, Science Citation Index, Scopus, and Web of Science with keywords of AI, orthopedic surgery, applications, and drawbacks. All related articles on AI and orthopaedic practice were reviewed. A total of 3210 articles were included in the review. Results: The data from 351 studies were analyzed where in orthopedic surgery. AI is being used for diagnostic procedures, radiological diagnosis, models of clinical care, and utilization of hospital and bed resources. AI has also taken a chunk of share in assisted robotic orthopaedic surgery. Conclusions: AI has now become part of the orthopedic practice and will further increase its stake in the healthcare industry. Nonetheless, clinicians should remain aware of AI’s serious limitations and pitfalls and consider the drawbacks and errors in its use.
文摘Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings.
文摘Purpose This scoping review aimed to offer researchers and practitioners an understanding of artificial intelligence(AI)applications in physical activity(PA)interventions;introduce them to prevalent machine learning(ML),deep learning(DL),and reinforcement learning(RL)algorithms;and encourage the adoption of AI methodologies.Methods A scoping review was performed in PubMed,Web of Science,Cochrane Library,and EBSCO focusing on AI applications for promoting PA or predicting related behavioral or health outcomes.AI methodologies were summarized and categorized to identify synergies,patterns,and trends informing future research.Additionally,a concise primer on predominant AI methodologies within the realm of PA was provided to bolster understanding and broader application.Results The review included 24 studies that met the predetermined eligibility criteria.AI models were found effective in detecting significant patterns of PA behavior and associations between specific factors and intervention outcomes.Most studies comparing AI models to traditional statistical approaches reported higher prediction accuracy for AI models on test data.Comparisons of different AI models yielded mixed results,likely due to model performance being highly dependent on the dataset and task.An increasing trend of adopting state-of-the-art DL and RL models over standard ML was observed,addressing complex human–machine communication,behavior modification,and decision-making tasks.Six key areas for future AI adoption in PA interventions emerged:personalized PA interventions,real-time monitoring and adaptation,integration of multimodal data sources,evaluation of intervention effectiveness,expanding access to PA interventions,and predicting and preventing injuries.Conclusion The scoping review highlights the potential of AI methodologies for advancing PA interventions.As the field progresses,staying informed and exploring emerging AI-driven strategies is essential for achieving significant improvements in PA interventions and fostering overall well-being.
基金supported by the National Social Science Foundation of China(Grant No.22BTQ089).
文摘Purpose:The transformative impact of disruptive technologies on the restructuring of the times has attracted widespread global attention.This study aims to analyze the characteristics and shortcomings of China’s artificial intelligence(AI)disruptive technology policy,and to put forward suggestions for optimizing China’s AI disruptive technology policy.Design/methodology/approach:Develop a three-dimensional analytical framework for“policy tools-policy actors-policy themes”and apply policy tools,social network analysis,and LDA topic model to conduct a comprehensive analysis of the utilization of policy tools,cooperative relationships among policy actors,and the trends in policy theme settings within China’s innovative AI technology policy.Findings:We find that the collaborative relationship among the policy actors of AI disruptive technology in China is insufficiently close.Marginal subjects exhibit low participation in the cooperation network and overly rely on central subjects,forming a“center-periphery”network structure.Policy tool usage is predominantly focused on supply and environmental types,with a severe inadequacy in demand-side policy tool utilization.Policy themes are diverse,encompassing topics such as“Intelligent Services”“Talent Cultivation”“Information Security”and“Technological Innovation”,which will remain focal points.Under the themes of“Intelligent Services”and“Intelligent Governance”,policy tool usage is relatively balanced,with close collaboration among policy entities.However,the theme of“AI Theoretical System”lacks a comprehensive understanding of tool usage and necessitates enhanced cooperation with other policy entities.Research limitations:The data sources and experimental scope are subject to certain limitations,potentially introducing biases and imperfections into the research results,necessitating further validation and refinement.Practical implications:The study introduces a three-dimensional analysis framework for disruptive technology policy texts,which is significant for formulating and enhancing disruptive technology policies.Originality/value:This study utilizes text mining and content analysis techniques to quantitatively analyze disruptive technology policy texts.It systematically evaluates China’s AI policies quantitatively,focusing on policy tools,policy actors,policy themes.The study uncovers the characteristics and deficiencies of current AI policies,offering recommendations for formulating and enhancing disruptive technology policies.
文摘Explainable Artificial Intelligence(XAI)has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning(ML)and Deep Learning(DL)based algorithms.In this paper,we chose e-healthcare systems for efficient decision-making and data classification,especially in data security,data handling,diagnostics,laboratories,and decision-making.Federated Machine Learning(FML)is a new and advanced technology that helps to maintain privacy for Personal Health Records(PHR)and handle a large amount of medical data effectively.In this context,XAI,along with FML,increases efficiency and improves the security of e-healthcare systems.The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning(FL)platform.The experimental evaluation demonstrates the accuracy rate by taking epochs size 5,batch size 16,and the number of clients 5,which shows a higher accuracy rate(19,104).We conclude the paper by discussing the existing gaps and future work in an e-healthcare system.
基金supported by grants from the industry prospecting and common key technology key projects of Jiangsu Province Science and Technology Department(Grant no.BE2020721)the Special guidance funds for service industry of Jiangsu Province Development and Reform Commission(Grant no.(2019)1089)+4 种基金the big data industry development pilot demonstration project of Ministry of Industry and Information Technology of China(Grant no.(2019)243,(2020)84)the Industrial and Information Industry Transformation and Upgrading Guiding Fund of Jiangsu Economy and Information Technology Commission(Grant no.(2018)0419)the Research Project of Jiangsu Province Sciences(Grant no.2019-2020ZZWKT15)the found of Jiangsu Engineering Research Center of Jiangsu Province Development and Reform Commission(Grant no.(2020)1460)the found of Jiangsu Digital Future Integration Innovation Center(Grant no.(2018)498).
文摘Along with the development of 5G network and Internet of Things technologies,there has been an explosion in personalized healthcare systems.When the 5G and Artificial Intelligence(Al)is introduced into diabetes management architecture,it can increase the efficiency of existing systems and complications of diabetes can be handled more effectively by taking advantage of 5G.In this article,we propose a 5G-based Artificial Intelligence Diabetes Management architecture(AIDM),which can help physicians and patients to manage both acute complications and chronic complications.The AIDM contains five layers:the sensing layer,the transmission layer,the storage layer,the computing layer,and the application layer.We build a test bed for the transmission and application layers.Specifically,we apply a delay-aware RA optimization based on a double-queue model to improve access efficiency in smart hospital wards in the transmission layer.In application layer,we build a prediction model using a deep forest algorithm.Results on real-world data show that our AIDM can enhance the efficiency of diabetes management and improve the screening rate of diabetes as well.