Purpose: The primary aim of this paper is to design, create, and improve functional and artificial Bruch’s membranes (BM) using bioengineering techniques, which can be applied in the treatment of maculopathies by sup...Purpose: The primary aim of this paper is to design, create, and improve functional and artificial Bruch’s membranes (BM) using bioengineering techniques, which can be applied in the treatment of maculopathies by supporting the growth and maintenance of retinal pigment epithelium (RPE) cells, thereby potentially enabling subretinal implantation in patients. Methods: We fabricated by electrospinning ultrathin 3D nanofibrous membranes from Polycaprolactone (PCL), and different concentrations of gelatin (5%, 15% and 30%). ARPE-19 cells were seeded onto these artificial membranes. MTT assays were performed in order to evaluate ARPE-19 cell viability and cytotoxicity. IF assays were realized to observe the ARPE-19 cells onto each membrane. Ultrastructure of the modified Bruch’s membrane and ARPE-19 morphology after 25 days of culture were studied with transmission and scanning electron microscopy. To evaluate expression changes in markers of ARPE-19 (RPE65 and ZO-1) qRT-PCR assays were realized. Data from three independent experiments were pooled and expressed as the mean SD. A confidence level of P 0.05 was considered to be statistically significant. Results ARPE-19 cells grew on PCL/Gelatin membranes mainly in PCL/30% gelatin combination, which had not cytotoxic effect. RPE65/cytokeratin-18/ and actin-positive ARPE-19 cells formed a correctly orientated monolayer of polygonal cells with morphological polarity. The apical cell surfaces exhibited abundant protruding microfolds. Moreover, zones of polygonal border look as if ARPE-19 cells fused among, suggesting the presence of tight junctions. The expression of RPE65 and ZO-1 was unchanged. Conclusions: PCL/30% Gelatine membranes may imitate the natural BM to such extent that they support RPE-cells and exhibited RPE-like morphology. The engineering of a human RPE monolayer with these artificial BM, emulating the in vivo retina, arouse their potential subretinal implantation in patients with wet age-related macular degeneration (AMD) where there is a rupture of the Bruch’s membrane.展开更多
Biological light-driven proton pumps which could transfer light energy to electrical energy have aroused intense interest in the past years.Many related researches have been conducted to mimic this process in vitro be...Biological light-driven proton pumps which could transfer light energy to electrical energy have aroused intense interest in the past years.Many related researches have been conducted to mimic this process in vitro because of its potential significant applications.This review describes the progress in biomimetic photoelectric conversion systems based on different kinds of promising artificial membranes.Both biological bacteriorhodopsin and the photosensitive chemical molecules which could be used to achieve the photoelectric conversion function are discussed.Also a short outlook in this field is demonstrated at the end.展开更多
Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers.The purpose of this study was to investigate the effects of emulsion type,addition ...Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers.The purpose of this study was to investigate the effects of emulsion type,addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments,in order to minimize overall systemic permeation of the substances.Formulation C(water-in-oil emulsion)significantly increased overall permeation of DEET through human skin(56%)compared to Formulation A(oil-in-water emulsion).Formulation B(oil-in-water emulsion with thickening agent xanthan gum)significantly decreased the size of oil droplet containing DEET(16%),but no effect on oil droplets containing oxybenzone.Adding xanthan gum also increased overall permeation of DEET and oxybenzone(21%and 150%)when compared to Formulation A;presence of both ingredients in Formulation B further increased their permeation(36%and 23%)in comparison to its single counterparts.Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628%than that through human skin;overall permeation of DEET through human skin was significantly higher by 64%-338%than that through LDPE.展开更多
Aim To explore interaction mode between amphoteric molecules with the orderedphospholipid membrane. Methods Membrane interactions were determined by immobilized artificialmembrane (IAM) chromatography and solutes'...Aim To explore interaction mode between amphoteric molecules with the orderedphospholipid membrane. Methods Membrane interactions were determined by immobilized artificialmembrane (IAM) chromatography and solutes' hydrophobicity was measured by n-octanol/buffer system.Results The ampholytes, similar to bases, generally exhibited higher membrane affinity than expectedfrom their hydrophobicity, resulting from the attractive polar interaction with phospholipidmembrane. Furthermore, the strength of additional polar interaction with membrane (Δlg k_(IAM)) wasthen calculated. The Δlg k_(IAM) values were far greater for bases and ampholytes ranging from0.50 - 1.39, than those for acids and neutrals with the scope from - 0.55 - 0.44. ConclusionConsidering the microspecies distribution of amphoteric molecules, it was assumed that not onlyneutral and positive but also zwitterionic microspecies are capable of partitioning into orderedamphoteric lipid membrane with complementarily conformational and energetically favorableinteractions.展开更多
The first combined experimental and theoretical study on the ionization and lipophilic properties of peptide nucleic acid(PNA)derivatives,including eleven PNA monomers and two PNA decamers,is described.The acidity con...The first combined experimental and theoretical study on the ionization and lipophilic properties of peptide nucleic acid(PNA)derivatives,including eleven PNA monomers and two PNA decamers,is described.The acidity constants(pKa)of individual acidic and basic centers of PNA monomers were measured by automated potentiometric pH titrations in water/methanol solution,and these values were found to be in agreement with those obtained by MoKa software.These results indicate that single nucleobases do not change their pKa values when included in PNA monomers and oligomers.In addition,immobilized artificial membrane chromatography was employed to evaluate the lipophilic properties of PNA monomers and oligomers,which showed the PNA derivatives had poor affinity towards membrane phospholipids,and confirmed their scarce cell penetrating ability.Overall,our study not only is of potential relevance to evaluate the pharmacokinetic properties of PNA,but also constitutes a reliable basis to properly modify PNA to obtain mimics with enhanced cell penetration properties.展开更多
Artificial lung membranes as the core module of the extracorporeal membrane oxygenation technology(ECMO)execute the function of extracorporeal blood-gas barrier accomplishing CO_(2)/O_(2)exchange with blood.However,th...Artificial lung membranes as the core module of the extracorporeal membrane oxygenation technology(ECMO)execute the function of extracorporeal blood-gas barrier accomplishing CO_(2)/O_(2)exchange with blood.However,the unsatisfactory hemocompatibility and difficulty in functionalization are the promi-nent challenges faced by current artificial lung membrane materials.In this study,polyethersulfone(PES)composite membranes with self-anticoagulant property and high gas exchange efficient are fabricated by blending PES matrix with poly(vinylamine)(PVAm)modified carboxylic carbon nanotubes(mCNTs)and citrate-based poly(octamethylene-citrate)(POC)pre-polymers.The mCNTs construct specific gas transfer channels within the composite membranes to enhance the gas permeability,while the POC pre-polymers provide anticoagulant property based on the chelation to blood Ca^(2+)and the inactivation effect to in-trinsic coagulation factors.Importantly,directed by the actual ECMO gas exchange mode,we design a gas-liquid convectional circulation device that could evaluate gas exchange efficiency for the composite membranes under mimetic ECMO state.Therefore,this strategy not only proposes a new design method of advanced artificial lung membranes to solve the practical challenges in the current ECMO technology,but also establishes a scientific testing method to evaluate the gas exchange performance for new-type artificial lung membrane materials in the future.展开更多
Replicating extraordinarily high membrane transport selectivity of protein channels in artificial channel is a challenging task.In this work,we demonstrate that a strategic application of steric code-based social self...Replicating extraordinarily high membrane transport selectivity of protein channels in artificial channel is a challenging task.In this work,we demonstrate that a strategic application of steric code-based social self-sorting offers a novel means to enhance ion transport selectivities of artificial ion channels,alongside with boosted ion transport activities.More specifically,two types of mutually compatible sterically bulky groups(benzo-crown ether and tert-butyl group)were appended onto a monopeptide-based scaffold,which can order the bulky groups onto the same side of a one-dimensionally aligned H-bonded structure.Strong steric repulsions among the same type of bulky groups(either benzo-crown ethers or tert-butyl groups),which are forced into proximity by H-bonds,favor the formation of hetero-oligomeric ensem-bles that carry an alternative arrangement of sterically compatible benzo-crown ethers and tert-butyl groups,rather than homo-oligomeric ensembles containing a single type of either benzo-crown ethers or tert-butyl groups.Coupled with side chain tuning,this social self-sorting strategy delivers highly ac-tive hetero-oligomeric K+-selective ion channel(5F12-BF12)_(n),displaying the highest K+/Na+selectivity of 20.1 among artificial potassium channels and an excellent ECso value of 0.50μmol/L(0.62 mo1%relative to lipids)in terms of single channel concentration.展开更多
We describe here a class of unconventional ion transporters,molecular rotors that transport ions through a rotating function rather than via traditional carrier or channel mechanisms.Mimicking macroscopic rotors,these...We describe here a class of unconventional ion transporters,molecular rotors that transport ions through a rotating function rather than via traditional carrier or channel mechanisms.Mimicking macroscopic rotors,these molecular rotors consist of three modularly tunable components,i.e.,a membrane-anchoring stator,a crown ether-containing rotator for ion binding and transport,and a triple bond-based axle that allows the rotator to freely rotate around the stator in the lipid membrane.Lipid bilayer experiments reveal the generally high ability of all molecular rotors in promoting the highly efficient transmembrane K^(+)flux(EC50 values=0.49-1.37 mol%relative to lipid).While molecular rotors differing only in the ion-binding unit exhibit similar ion transport activities,those differing in the rotator’s length display activity differences by up to 174%.展开更多
The traditional approach to utilizing an ion-relay mechanism for ion transport requires three or more ion-relay stations.Herein,we describe a novel strategy,incorporating a swing action to realize a minimal ion-relay ...The traditional approach to utilizing an ion-relay mechanism for ion transport requires three or more ion-relay stations.Herein,we describe a novel strategy,incorporating a swing action to realize a minimal ion-relay mechanism via only two relay stations.This swing-relay mechanism was achieved using a class of crown ether-appended,long-armed molecular tetrahedrons(MTs).These MTs comprise ion-relaying crown units attached to a rigid tetrahedral core via flexible alkyl linkers,which act as the mobile arms and endow the crown units with great mobility to swing.展开更多
C60, as one of carbon nanomaterials widely used in various fields, could be released into the water environment thus exerting some potential health risks to human beings. This work examined the behavior of aqueous sta...C60, as one of carbon nanomaterials widely used in various fields, could be released into the water environment thus exerting some potential health risks to human beings. This work examined the behavior of aqueous stable colloidal nano-C60 (nC60) aggregates under different environmental conditions including Polyethylene glycol octylphenol ether (TX100) micelles concentration, pH, and reaction time when exposed to TX100micelles. Results show that the nC60 aggregates became more dispersive and restored the capability of generating the singlet oxygen when exposed to TX100 micelles. With the increase of TX100 concentration, smaller average size of nC60 aggregates was observed in dynamic light scattering (DLS) analysis, the fluorescence intensity of TX100 was more quenched by nC60 aggregates, and the kinetic rate constant of generating the singlet oxygen for nC60 aggregates was improved. The mean size of nC60 aggregates in the presence of TX 100 had no obvious variations when the pH ranged from 4 to 8. The longer reaction time between nCro aggregates and TX100 led to a higher kinetic rate constant of generating the singlet oxygen. Collective data suggest that variations in physicochemical properties of nC60 aggregates are strongly dependent on the surrounding media under different environmental conditions and directly govern nC60'S transport behavior and potential toxicity.展开更多
文摘Purpose: The primary aim of this paper is to design, create, and improve functional and artificial Bruch’s membranes (BM) using bioengineering techniques, which can be applied in the treatment of maculopathies by supporting the growth and maintenance of retinal pigment epithelium (RPE) cells, thereby potentially enabling subretinal implantation in patients. Methods: We fabricated by electrospinning ultrathin 3D nanofibrous membranes from Polycaprolactone (PCL), and different concentrations of gelatin (5%, 15% and 30%). ARPE-19 cells were seeded onto these artificial membranes. MTT assays were performed in order to evaluate ARPE-19 cell viability and cytotoxicity. IF assays were realized to observe the ARPE-19 cells onto each membrane. Ultrastructure of the modified Bruch’s membrane and ARPE-19 morphology after 25 days of culture were studied with transmission and scanning electron microscopy. To evaluate expression changes in markers of ARPE-19 (RPE65 and ZO-1) qRT-PCR assays were realized. Data from three independent experiments were pooled and expressed as the mean SD. A confidence level of P 0.05 was considered to be statistically significant. Results ARPE-19 cells grew on PCL/Gelatin membranes mainly in PCL/30% gelatin combination, which had not cytotoxic effect. RPE65/cytokeratin-18/ and actin-positive ARPE-19 cells formed a correctly orientated monolayer of polygonal cells with morphological polarity. The apical cell surfaces exhibited abundant protruding microfolds. Moreover, zones of polygonal border look as if ARPE-19 cells fused among, suggesting the presence of tight junctions. The expression of RPE65 and ZO-1 was unchanged. Conclusions: PCL/30% Gelatine membranes may imitate the natural BM to such extent that they support RPE-cells and exhibited RPE-like morphology. The engineering of a human RPE monolayer with these artificial BM, emulating the in vivo retina, arouse their potential subretinal implantation in patients with wet age-related macular degeneration (AMD) where there is a rupture of the Bruch’s membrane.
基金supported by the National Basic Research Program of China (2010CB934700,2009CB930404,2007CB936403,2007CB936400)National Natural Science Foundation of China (20974113,20920102036)
文摘Biological light-driven proton pumps which could transfer light energy to electrical energy have aroused intense interest in the past years.Many related researches have been conducted to mimic this process in vitro because of its potential significant applications.This review describes the progress in biomimetic photoelectric conversion systems based on different kinds of promising artificial membranes.Both biological bacteriorhodopsin and the photosensitive chemical molecules which could be used to achieve the photoelectric conversion function are discussed.Also a short outlook in this field is demonstrated at the end.
基金support from Canada Foundation for Innovation(CFI)Manitoba Institute of Child Health(MICH)graduate studentship from MHRC(TW).
文摘Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers.The purpose of this study was to investigate the effects of emulsion type,addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments,in order to minimize overall systemic permeation of the substances.Formulation C(water-in-oil emulsion)significantly increased overall permeation of DEET through human skin(56%)compared to Formulation A(oil-in-water emulsion).Formulation B(oil-in-water emulsion with thickening agent xanthan gum)significantly decreased the size of oil droplet containing DEET(16%),but no effect on oil droplets containing oxybenzone.Adding xanthan gum also increased overall permeation of DEET and oxybenzone(21%and 150%)when compared to Formulation A;presence of both ingredients in Formulation B further increased their permeation(36%and 23%)in comparison to its single counterparts.Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628%than that through human skin;overall permeation of DEET through human skin was significantly higher by 64%-338%than that through LDPE.
文摘Aim To explore interaction mode between amphoteric molecules with the orderedphospholipid membrane. Methods Membrane interactions were determined by immobilized artificialmembrane (IAM) chromatography and solutes' hydrophobicity was measured by n-octanol/buffer system.Results The ampholytes, similar to bases, generally exhibited higher membrane affinity than expectedfrom their hydrophobicity, resulting from the attractive polar interaction with phospholipidmembrane. Furthermore, the strength of additional polar interaction with membrane (Δlg k_(IAM)) wasthen calculated. The Δlg k_(IAM) values were far greater for bases and ampholytes ranging from0.50 - 1.39, than those for acids and neutrals with the scope from - 0.55 - 0.44. ConclusionConsidering the microspecies distribution of amphoteric molecules, it was assumed that not onlyneutral and positive but also zwitterionic microspecies are capable of partitioning into orderedamphoteric lipid membrane with complementarily conformational and energetically favorableinteractions.
基金Pramod Thakare thanks the University of Milan for the Ph.D.fellowship.Giulia Caron,Maura Vallaro and Sonja Visentin acknowledge the financial support from the University of Turin(Ricerca Locale ex-60%,Bando2019).
文摘The first combined experimental and theoretical study on the ionization and lipophilic properties of peptide nucleic acid(PNA)derivatives,including eleven PNA monomers and two PNA decamers,is described.The acidity constants(pKa)of individual acidic and basic centers of PNA monomers were measured by automated potentiometric pH titrations in water/methanol solution,and these values were found to be in agreement with those obtained by MoKa software.These results indicate that single nucleobases do not change their pKa values when included in PNA monomers and oligomers.In addition,immobilized artificial membrane chromatography was employed to evaluate the lipophilic properties of PNA monomers and oligomers,which showed the PNA derivatives had poor affinity towards membrane phospholipids,and confirmed their scarce cell penetrating ability.Overall,our study not only is of potential relevance to evaluate the pharmacokinetic properties of PNA,but also constitutes a reliable basis to properly modify PNA to obtain mimics with enhanced cell penetration properties.
基金the National Natural Science Foundation of China(Nos.U21A2098,51903171)the Key Research and Development Support Programme of Chengdu(No.2020-YF05-00316-SN)+2 种基金the State Key Research Development Pro-gramme of China(No.2018YFC1106400)the Science and Technol-ogy Project of Sichuan Province(No.2021YJ0188)the State Key Laboratory of Polymer Materials Engineering(No.sklpme2020-3-06).
文摘Artificial lung membranes as the core module of the extracorporeal membrane oxygenation technology(ECMO)execute the function of extracorporeal blood-gas barrier accomplishing CO_(2)/O_(2)exchange with blood.However,the unsatisfactory hemocompatibility and difficulty in functionalization are the promi-nent challenges faced by current artificial lung membrane materials.In this study,polyethersulfone(PES)composite membranes with self-anticoagulant property and high gas exchange efficient are fabricated by blending PES matrix with poly(vinylamine)(PVAm)modified carboxylic carbon nanotubes(mCNTs)and citrate-based poly(octamethylene-citrate)(POC)pre-polymers.The mCNTs construct specific gas transfer channels within the composite membranes to enhance the gas permeability,while the POC pre-polymers provide anticoagulant property based on the chelation to blood Ca^(2+)and the inactivation effect to in-trinsic coagulation factors.Importantly,directed by the actual ECMO gas exchange mode,we design a gas-liquid convectional circulation device that could evaluate gas exchange efficiency for the composite membranes under mimetic ECMO state.Therefore,this strategy not only proposes a new design method of advanced artificial lung membranes to solve the practical challenges in the current ECMO technology,but also establishes a scientific testing method to evaluate the gas exchange performance for new-type artificial lung membrane materials in the future.
基金supported by the National Natural Science Foundation of China(No.22271049)Fuzhou University,Xiamen University and Northwestern Polytechnical University.
文摘Replicating extraordinarily high membrane transport selectivity of protein channels in artificial channel is a challenging task.In this work,we demonstrate that a strategic application of steric code-based social self-sorting offers a novel means to enhance ion transport selectivities of artificial ion channels,alongside with boosted ion transport activities.More specifically,two types of mutually compatible sterically bulky groups(benzo-crown ether and tert-butyl group)were appended onto a monopeptide-based scaffold,which can order the bulky groups onto the same side of a one-dimensionally aligned H-bonded structure.Strong steric repulsions among the same type of bulky groups(either benzo-crown ethers or tert-butyl groups),which are forced into proximity by H-bonds,favor the formation of hetero-oligomeric ensem-bles that carry an alternative arrangement of sterically compatible benzo-crown ethers and tert-butyl groups,rather than homo-oligomeric ensembles containing a single type of either benzo-crown ethers or tert-butyl groups.Coupled with side chain tuning,this social self-sorting strategy delivers highly ac-tive hetero-oligomeric K+-selective ion channel(5F12-BF12)_(n),displaying the highest K+/Na+selectivity of 20.1 among artificial potassium channels and an excellent ECso value of 0.50μmol/L(0.62 mo1%relative to lipids)in terms of single channel concentration.
基金This work was supported by Northwestern Poly-technical University.
文摘We describe here a class of unconventional ion transporters,molecular rotors that transport ions through a rotating function rather than via traditional carrier or channel mechanisms.Mimicking macroscopic rotors,these molecular rotors consist of three modularly tunable components,i.e.,a membrane-anchoring stator,a crown ether-containing rotator for ion binding and transport,and a triple bond-based axle that allows the rotator to freely rotate around the stator in the lipid membrane.Lipid bilayer experiments reveal the generally high ability of all molecular rotors in promoting the highly efficient transmembrane K^(+)flux(EC50 values=0.49-1.37 mol%relative to lipid).While molecular rotors differing only in the ion-binding unit exhibit similar ion transport activities,those differing in the rotator’s length display activity differences by up to 174%.
基金Northwestern Polytechnical University and the NanoBio Lab(Biomedical Research Council,Agency for Science,Technology,and Research).
文摘The traditional approach to utilizing an ion-relay mechanism for ion transport requires three or more ion-relay stations.Herein,we describe a novel strategy,incorporating a swing action to realize a minimal ion-relay mechanism via only two relay stations.This swing-relay mechanism was achieved using a class of crown ether-appended,long-armed molecular tetrahedrons(MTs).These MTs comprise ion-relaying crown units attached to a rigid tetrahedral core via flexible alkyl linkers,which act as the mobile arms and endow the crown units with great mobility to swing.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 21177084), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2010.40th), Shanghai Jiao Tong University Medical and Engineer- ing Crossing Research Fund, Shanghai Jiao Tong University SMC-B Research Fund, and Intercollegiate cooperative project supported by Shanghai Jiaotong University(2013).
文摘C60, as one of carbon nanomaterials widely used in various fields, could be released into the water environment thus exerting some potential health risks to human beings. This work examined the behavior of aqueous stable colloidal nano-C60 (nC60) aggregates under different environmental conditions including Polyethylene glycol octylphenol ether (TX100) micelles concentration, pH, and reaction time when exposed to TX100micelles. Results show that the nC60 aggregates became more dispersive and restored the capability of generating the singlet oxygen when exposed to TX100 micelles. With the increase of TX100 concentration, smaller average size of nC60 aggregates was observed in dynamic light scattering (DLS) analysis, the fluorescence intensity of TX100 was more quenched by nC60 aggregates, and the kinetic rate constant of generating the singlet oxygen for nC60 aggregates was improved. The mean size of nC60 aggregates in the presence of TX 100 had no obvious variations when the pH ranged from 4 to 8. The longer reaction time between nCro aggregates and TX100 led to a higher kinetic rate constant of generating the singlet oxygen. Collective data suggest that variations in physicochemical properties of nC60 aggregates are strongly dependent on the surrounding media under different environmental conditions and directly govern nC60'S transport behavior and potential toxicity.