期刊文献+
共找到885篇文章
< 1 2 45 >
每页显示 20 50 100
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
1
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
下载PDF
STUDY ON ARTIFICIAL NEURAL NETWORK FORECASTING METHOD OF WATER CONSUMPTION PER HOUR 被引量:5
2
作者 刘洪波 张宏伟 +1 位作者 田林 王新芳 《Transactions of Tianjin University》 EI CAS 2001年第4期233-237,共5页
An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer no... An artificial neural network (ANN) short term forecasting model of consumption per hour was built based on seasonality,trend and randomness of a city period of time water consumption series.Different hidden layer nodes,same inputs and forecasting data were selected to train and forecast and then the relative errors were compared so as to confirm the NN structure.A model was set up and used to forecast concretely by Matlab.It is tested by examples and compared with the result of time series trigonometric function analytical method.The result indicates that the prediction errors of NN are small and the velocity of forecasting is fast.It can completely meet the actual needs of the control and run of the water supply system. 展开更多
关键词 artificial neural network consumption per hour FORECAST bp algorithm MATLAB
下载PDF
Proton exchange membrane fuel cells modeling based on artificial neural networks 被引量:4
3
作者 YudongTian XinjianZhu GuangyiCao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第1期72-77,共6页
To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are anal... To understand the complexity of the mathematical models of a proton exchange membrane fuel cell (PEMFC) and their shortage of practical PEMFC control, the PEMFC complex mechanism and the existing PEMFC models are analyzed, and artificial neural networks based PEMFC modeling is advanced. The structure, algorithm, training and simulation of PEMFC modeling based on improved BP networks are given out in detail. The computer simulation and conducted experiment verify that this model is fast and accurate, and can be used as a suitable operational model for PEMFC real-time control. 展开更多
关键词 fuel cells proton exchange membrane artificial neural networks improved bp algorithm MODELING
下载PDF
Development of Al_2O_3/TiN Ceramie Cutting Tool Materials by Artificial Neural Networks 被引量:2
4
作者 Ning FAM, Xiangbo ZE and Zihui GAOSchool of Mechanical Engineering, Jinan University, Jinan 250022, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期797-800,共4页
The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the m... The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements. 展开更多
关键词 Multiphase ceramies artificial neural network bp algorithm
下载PDF
Adaptive prediction system of sintering through point based on self-organize artificial neural network 被引量:5
5
作者 冯其明 李 桃 +1 位作者 范晓慧 姜 涛 《中国有色金属学会会刊:英文版》 CSCD 2000年第6期804-807,共4页
A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificia... A soft sensing method of burning through point (BTP) was described and a new predictive parameter—the mathematics inflexion point of waste gas temperature curve in the middle of the strand was proposed. The artificial neural network was used in predicting BTP, modification on backpropagation algorithm was made in order to improve the convergence and self organize the hidden layer neurons. The adaptive prediction system developed on these techniques shows its characters such as fast, accuracy, less dependence on production data. The prediction of BTP can be used as operation guidance or control parameter.[ 展开更多
关键词 SINTERING process BURNING through POINT prediction artificial neural network bp algorith
下载PDF
An Improved BP Algorithm and Its Application in Classification of Surface Defects of Steel Plate 被引量:4
6
作者 ZHAO Xiang-yang LAI Kang-sheng DAI Dong-ming 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第2期52-55,共4页
Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural net... Artificial neural network is a new approach to pattern recognition and classification. The model of multilayer perceptron (MLP) and back-propagation (BP) is used to train the algorithm in the artificial neural network. An improved fast algorithm of the BP network was presented, which adopts a singular value decomposition (SVD) and a generalized inverse matrix. It not only increases the speed of network learning but also achieves a satisfying precision. The simulation and experiment results show the effect of improvement of BP algorithm on the classification of the surface defects of steel plate. 展开更多
关键词 artificial neural network MLP bp algorithm SVD generalized inverse matrix
下载PDF
Parameters Optimization of the Heating Furnace Control Systems Based on BP Neural Network Improved by Genetic Algorithm 被引量:4
7
作者 Qiong Wang Xiaokan Wang 《Journal on Internet of Things》 2020年第2期75-80,共6页
The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the ... The heating technological requirement of the conventional PID control is difficult to guarantee which based on the precise mathematical model,because the heating furnace for heating treatment with the big inertia,the pure time delay and nonlinear time-varying.Proposed one kind optimized variable method of PID controller based on the genetic algorithm with improved BP network that better realized the completely automatic intelligent control of the entire thermal process than the classics critical purporting(Z-N)method.A heating furnace for the object was simulated with MATLAB,simulation results show that the control system has the quicker response characteristic,the better dynamic characteristic and the quite stronger robustness,which has some promotional value for the control of industrial furnace. 展开更多
关键词 Genetic algorithm parameter optimization PID control bp neural network heating furnace
下载PDF
Artificial Neural Networks Model of Evaluating the Schemes of Mine Design 被引量:1
8
作者 LU Zong\|hua,\ YAO Lai\|chang Shandong Institute of Mining & Technology, Tai′an 271019, China 《Systems Science and Systems Engineering》 CSCD 2000年第2期216-221,共6页
This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the st... This paper is about the application of ANN (artificial neural networks) theory in evaluation of mine design schemes and a quantified evaluation method based on a three\|layer neural network is given. It studies the structure of the three\|layer neural network, its learning process, its operating algorithm to realize the evaluation of mine design schemes in a computer and a practical example is also involved in it. 展开更多
关键词 artificial neural network mine design scheme bp algorithm
原文传递
采用改进BP-PID控制的机器人避障仿真研究
9
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 bp神经网络 PID控制器 改进粒子群算法 避障 仿真
下载PDF
Neural network fault diagnosis method optimization with rough set and genetic algorithms
10
作者 孙红岩 《Journal of Chongqing University》 CAS 2006年第2期94-97,共4页
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th... Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly. 展开更多
关键词 rough sets genetic algorithm bp algorithms artificial neural network encoding rule
下载PDF
Artificial neural network with modified rider optimization for design and control of PV-integrated quasi Z-source cascaded multilevel inverter system
11
作者 V.C.Harish Kumar S.Amala Shanthi 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2021年第1期87-111,共25页
The modeling of the controller for quasi Z-Source Cascaded Multilevel Inverter(qZSCMI)-dependent 3-phase grid-tie Photovoltaic(PV)power system is considered in this paper.The state-of-the-art controller requires preci... The modeling of the controller for quasi Z-Source Cascaded Multilevel Inverter(qZSCMI)-dependent 3-phase grid-tie Photovoltaic(PV)power system is considered in this paper.The state-of-the-art controller requires precise conceptual models and sophisticated optimization principles based on the derived models.However,such processes are limited to known system models,which are uncertain in future systems.Here,the controller for 3-phase qZS-CMI is modeled based on two phases,and the source PV voltage and output grid current are controlled.In Phase I,optimized Proportional Integral(PI)controller is used for finding out the total PV voltage,and Phase II utilizes the optimized Proportional Resonant(PR)controller enabled with the Artificial Neural Network(ANN)for controlling the grid current.For two phases,the modified optimization algorithm called Fitness Enabled-Rider Optimization Algorithm(FE-ROA)is used.Moreover,in Phase II,ANN is trained in an offline mode with the exact dataset arranged by the proposed FE-ROA,and it guarantees the control of grid current.The two phases plan to optimize the gain of both PI and PR controllers respectively using the same proposed algorithm.The main objective of phase I is to lessen the error among the reference PV voltage,and measured voltage,and phase II is to lessen the error among the reference and measured grid current.Hence,the grid-tie current injection is achieved by the developed module,and system-level control offers independent Maximum Power Point Tracking(MPPT).Lastly,the performance of the proposed controller for qZS-CMI is compared over the other controllers and substantiates the efficacy of the proposed one. 展开更多
关键词 qZS-CMI PI controller PR controller artificial neural network fitness enabled-rider optimization algorithm
原文传递
基于麻雀搜索算法优化BP人工神经网络的短期湍流预报模型研究 被引量:1
12
作者 张恒 张雷 +2 位作者 姚海峰 佟首峰 曹玉玺 《长春理工大学学报(自然科学版)》 2024年第2期58-65,共8页
提出了一种基于麻雀搜索算法优化BP人工神经网络(SSA-BP)的湍流预报模式。首先,采用BP人工神经网络作为湍流预报模型的基础框架。通过对温度、湿度、风速等气象因素的采集和处理,将其作为输入层的特征。然后,利用麻雀搜索算法对BP人工... 提出了一种基于麻雀搜索算法优化BP人工神经网络(SSA-BP)的湍流预报模式。首先,采用BP人工神经网络作为湍流预报模型的基础框架。通过对温度、湿度、风速等气象因素的采集和处理,将其作为输入层的特征。然后,利用麻雀搜索算法对BP人工神经网络的权重和偏置进行优化。为了验证该方法的有效性,采用了来自地面气象站的大气湍流数据及气象数据进行实验。实验结果表明,SSA-BP人工神经网络能够成功预测大气湍流的发展趋势,并具有较高的预测精度和稳定性,能够充分利用大气湍流数据中的非线性特征,为湍流预测研究和实际应用提供了有力支持。 展开更多
关键词 bp人工神经网络 麻雀搜索算法 气象参数 大气湍流预测
下载PDF
STUDY ON INJECTION AND IGNITION CONTROL OF GASOLINE ENGINE BASED ON BP NEURAL NETWORK 被引量:13
13
作者 Zhang Cuiping Yang QingfoCollege of Mechanical Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第4期441-444,共4页
According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP... According to advantages of neural network and characteristics of operatingprocedures of engine, a new strategy is represented on the control of fuel injection and ignitiontiming of gasoline engine based on improved BP network algorithm. The optimum ignition advance angleand fuel injection pulse band of engine under different speed and load are tested for the samplestraining network, focusing on the study of the design method and procedure of BP neural network inengine injection and ignition control. The results show that artificial neural network technique canmeet the requirement of engine injection and ignition control. The method is feasible for improvingpower performance, economy and emission performances of gasoline engine. 展开更多
关键词 neural network bp algorithm Gasoline engine CONTROL
下载PDF
Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm 被引量:9
14
作者 Hong-Bin Wang Mian Liu 《International Journal of Automation and computing》 EI 2012年第1期24-29,共6页
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req... A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control. 展开更多
关键词 Visual servo image Jacobian back propagation bp neural network genetic algorithm robot control
下载PDF
基于Sine-SSA-BP人工神经网络的腐蚀速率预测研究
15
作者 李昭毅 孙虎元 +1 位作者 蔡振宇 孙立娟 《海洋科学》 CAS CSCD 北大核心 2024年第8期17-28,共12页
海洋工程用钢广泛应用于海洋资源开发;然而,在海洋环境中,由于海洋环境复杂,钢的腐蚀速度大幅加快。为了评估其使用寿命,需要准确地预测钢的腐蚀速率。挂片实验法费时费力,经验模型预测虽然可以快速预测,但因海洋中影响腐蚀的因素较多,... 海洋工程用钢广泛应用于海洋资源开发;然而,在海洋环境中,由于海洋环境复杂,钢的腐蚀速度大幅加快。为了评估其使用寿命,需要准确地预测钢的腐蚀速率。挂片实验法费时费力,经验模型预测虽然可以快速预测,但因海洋中影响腐蚀的因素较多,准确度较差。本文介绍了一种机器学习方法,即反向传播(BP)神经网络金属腐蚀速率预测模型。本研究创新性地将Sine混沌映射与麻雀搜索优化算法(SSA)引入腐蚀速率预测模型中,并利用2022年采集到的海洋环境要素和腐蚀速率数据导入模型进行训练预测。结果表明,SSA-BP和Sine-SSA-BP神经网络金属腐蚀速率预测模型的误差远低于BP神经网络腐蚀速率预测模型。经过充分的训练和学习,当预测样本数量由5至30逐渐增加时,Sine-SSA-BP预测模型的平均MAPE值为3.5002%,SSA-BP模型的平均MAPE值为6.0900%。 展开更多
关键词 海洋腐蚀 bp人工神经网络 麻雀搜索优化算法 预测精度
下载PDF
基于SO-BP神经网络的温室环境预测模型研究
16
作者 张万帆 任力生 王芳 《中国农机化学报》 北大核心 2024年第8期94-99,106,共7页
由于温室环境中温湿度的调控过程存在滞后响应特性,预测温室环境变化趋势是构建温室精准控制系统中不可或缺的一部分。针对传统神经网络算法在温室预测方面精度不足等问题,提出一种基于蛇优化算法(snake optimizer,SO)优化BP神经网络的... 由于温室环境中温湿度的调控过程存在滞后响应特性,预测温室环境变化趋势是构建温室精准控制系统中不可或缺的一部分。针对传统神经网络算法在温室预测方面精度不足等问题,提出一种基于蛇优化算法(snake optimizer,SO)优化BP神经网络的温室环境预测方法。试验结果表明,该方法预测15 min内温度的决定系数R^(2)为0.9564,比BP模型、HHO-BP模型分别提高14.87%、2.19%,平均绝对误差MAE、平均绝对百分比误差MAPE、均方根误差RMSE值分别为0.4813、2.2378、0.6729;预测15 min内湿度的R^(2)为0.9821,比BP模型、HHO-BP模型分别提高13.12%、2.37%,预测指标MAE、MAPE、RMSE值分别为1.7090、2.5842、2.2838。该模型的预测结果较理想,可用于温室温湿度预测。 展开更多
关键词 温室环境 温湿度预测 精准控制系统 蛇优化算法 神经网络
下载PDF
基于BP-FWA算法的无人艇载火箭炮回转机构伺服控制系统研究
17
作者 岳光 邱海莲 +2 位作者 任琳 潘玉田 郭保全 《火炮发射与控制学报》 北大核心 2024年第4期1-6,12,共7页
针对目前传统艇载火箭炮回转机构控制误差大、精度低及行驶中抗干扰能力弱等问题,提出基于烟花算法(BP-FWA)神经网络算法无人艇载火箭炮回转机构伺服控制研究。构建某无人艇载火箭炮回转机构伺服控制构架;建立回转机构数学模型,结合DSP... 针对目前传统艇载火箭炮回转机构控制误差大、精度低及行驶中抗干扰能力弱等问题,提出基于烟花算法(BP-FWA)神经网络算法无人艇载火箭炮回转机构伺服控制研究。构建某无人艇载火箭炮回转机构伺服控制构架;建立回转机构数学模型,结合DSP进行控制信号处理;提出BP-FWA算法模型设计,实现对回转机构伺服控制的精确优化控制。结果表明:该算法下的伺服控制系统响应速度快、控制精度高、误差小及抗干扰能力强,提升无人艇载火箭炮的运行效果,具有很重要军事工程应用价值,为实现我海军艇载武器装备的智能化水平提供重要的支撑。 展开更多
关键词 无人艇 舰载火箭炮 bp-FWA神经网络算法 回转机构 DSP 伺服控制
下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计
18
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 PSO-bp神经网络 模糊PID算法 控制系统
下载PDF
基于GA-BP网络的数控机床动态误差预测研究
19
作者 李帅杰 陈光胜 《机电工程》 CAS 北大核心 2024年第10期1747-1758,共12页
动态误差是高速高精度数控机床的重要误差源,针对实际加工过程中动态误差对工件精度影响较大的问题,提出了一种基于遗传算法优化的反向传播(GA-BP)神经网络以预测动态误差。首先,为了提高神经网络对动态误差的预测精度,从线性特征与非... 动态误差是高速高精度数控机床的重要误差源,针对实际加工过程中动态误差对工件精度影响较大的问题,提出了一种基于遗传算法优化的反向传播(GA-BP)神经网络以预测动态误差。首先,为了提高神经网络对动态误差的预测精度,从线性特征与非线性特征两方面对动态误差影响因素进行了深入分析,确定了神经网络输入输出参数;然后,采用了遗传算法对BP神经网络进行了优化,建立了动态误差模型,获得了最优网络学习参数,从而实现了对动态跟随误差的精准预测;之后,采用三次样条插值的方法对理想轨迹与实际轨迹之间的轮廓误差进行了计算,有效提高了轮廓误差估算精度;最后,采用了五轴数控机床进行了实验,对模型的有效性进行了验证。研究结果表明:所建神经网络模型可以精准预测机床反向越冲特性对轮廓误差的影响,各轴的动态误差预测精度为±3μm,复杂轨迹轮廓误差预测精度为±1.5μm。实验结果验证了所建模型的可靠性,为后续机床动态误差建模与控制研究提供了一定的参考价值。 展开更多
关键词 高速高精度数控机床 动态误差 非线性特征 遗传算法优化的反向传播神经网络 轮廓误差估算
下载PDF
NONLINEAR MODELING AND CONTROLLING OF ARTIFICIAL MUSCLE SYSTEM USING NEURAL NETWORKS
20
作者 Tian Sheping Ding Guoqing +1 位作者 Yan Detian Lin Liangming Department of Information Measurement and Instrumentation,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期306-310,共5页
The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is... The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme. 展开更多
关键词 artificial muscle neural networks Recursive prediction error algorithm Nonlinear modeling and controlling
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部