期刊文献+
共找到14,089篇文章
< 1 2 250 >
每页显示 20 50 100
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets
1
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
Artificial neural network-based method for discriminating Compton scattering events in high-purity germaniumγ-ray spectrometer
2
作者 Chun-Di Fan Guo-Qiang Zeng +5 位作者 Hao-Wen Deng Lei Yan Jian Yang Chuan-Hao Hu Song Qing Yang Hou 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期64-84,共21页
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul... To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively. 展开更多
关键词 High-purity germaniumγ-ray spectrometer Pulse-shape discrimination Compton scattering artificial neural network Minimum detectable activity
下载PDF
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
3
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM artificial neural network Fuzzy Logic Average Grain Size and Mechanical Properties
下载PDF
A Review of Computing with Spiking Neural Networks
4
作者 Jiadong Wu Yinan Wang +2 位作者 Zhiwei Li Lun Lu Qingjiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第3期2909-2939,共31页
Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,exces... Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing. 展开更多
关键词 Spiking neural networks neural networks brain-like computing artificial intelligence learning algorithm
下载PDF
Application of Convolutional Neural Networks in Classification of GBM for Enhanced Prognosis
5
作者 Rithik Samanthula 《Advances in Bioscience and Biotechnology》 CAS 2024年第2期91-99,共9页
The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat... The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness. 展开更多
关键词 GLIOBLASTOMA Machine Learning artificial Intelligence neural networks Brain Tumor Cancer Tensorflow LAYERS CYTOARCHITECTURE Deep Learning Deep neural network Training Batches
下载PDF
Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm
6
作者 Guilin Wu Shenghua Huang +7 位作者 Tingting Liu Zhuoni Yang Yuesong Wu Guihong Wei Peng Yu Qilin Zhang Jun Feng Bo Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2709-2725,共17页
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica... Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation. 展开更多
关键词 Finite element method 3D printing polymer esophageal stent artificial neural network
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
7
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) artificial neural network Mining engineering
下载PDF
Artificial neural network-based one-equation model for simulation of laminar-turbulent transitional flow 被引量:1
8
作者 Lei Wu Bing Cui Zuoli Xiao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期50-57,共8页
A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equa... A mapping function between the Reynolds-averaged Navier-Stokes mean flow variables and transition intermittency factor is constructed by fully connected artificial neural network(ANN),which replaces the governing equation of the intermittency factor in transition-predictive Spalart-Allmaras(SA)-γmodel.By taking SA-γmodel as the benchmark,the present ANN model is trained at two airfoils with various angles of attack,Mach numbers and Reynolds numbers,and tested with unseen airfoils in different flow states.The a posteriori tests manifest that the mean pressure coefficient,skin friction coefficient,size of laminar separation bubble,mean streamwise velocity,Reynolds shear stress and lift/drag/moment coefficient from the present two-way coupling ANN model almost coincide with those from the benchmark SA-γmodel.Furthermore,the ANN model proves to exhibit a higher calculation efficiency and better convergence quality than traditional SA-γmodel. 展开更多
关键词 TRANSITION TURBULENCE Eddy-viscosity model artificial neural network Intermittency factor
下载PDF
Prediction of column failure modes based on artificial neural network 被引量:1
9
作者 Wan Haitao Qi Yongle +2 位作者 Zhao Tiejun Ren Wenjuan Fu Xiaoyan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期481-493,共13页
To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Eart... To implement the performance-based seismic design of engineered structures,the failure modes of members must be classified.The classification method of column failure modes is analyzed using data from the Pacific Earthquake Engineering Research Center(PEER).The main factors affecting failure modes of columns include the hoop ratios,longitudinal reinforcement ratios,ratios of transverse reinforcement spacing to section depth,aspect ratios,axial compression ratios,and flexure-shear ratios.This study proposes a data-driven prediction model based on an artificial neural network(ANN)to identify the column failure modes.In this study,111 groups of data are used,out of which 89 are used as training data and 22 are used as test data,and the ANN prediction model of failure modes is developed.The results show that the proposed method based on ANN is superior to traditional methods in identifying the column failure modes. 展开更多
关键词 performance-based seismic design failure mode COLUMN artificial neural network prediction model
下载PDF
Adaptive fuze-warhead coordination method based on BP artificial neural network 被引量:1
10
作者 Peng Hou Yang Pei Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期117-133,共17页
The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the... The appropriate fuze-warhead coordination method is important to improve the damage efficiency of air defense missiles against aircraft targets. In this paper, an adaptive fuze-warhead coordination method based on the Back Propagation Artificial Neural Network(BP-ANN) is proposed, which uses the parameters of missile-target intersection to adaptively calculate the initiation delay. The damage probabilities at different radial locations along the same shot line of a given intersection situation are calculated, so as to determine the optimal detonation position. On this basis, the BP-ANN model is used to describe the complex and highly nonlinear relationship between different intersection parameters and the corresponding optimal detonating point position. In the actual terminal engagement process, the fuze initiation delay is quickly determined by the constructed BP-ANN model combined with the missiletarget intersection parameters. The method is validated in the case of the single-shot damage probability evaluation. Comparing with other fuze-warhead coordination methods, the proposed method can produce higher single-shot damage probability under various intersection conditions, while the fuzewarhead coordination effect is less influenced by the location of the aim point. 展开更多
关键词 Aircraft vulnerability Fuze-warhead coordination BP artificial neural network Damage probability Initiation delay
下载PDF
Prediction of Apple Fruit Quality by Soil Nutrient Content and Artificial Neural Network 被引量:1
11
作者 Mengyao Yan Xianqi Zeng +5 位作者 Banghui Zhang Hui Zhang Di Tan Binghua Cai Shenchun Qu Sanhong Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期193-208,共16页
The effect of soil nutrient content on fruit yield and fruit quality is very important.To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County,Jiangsu... The effect of soil nutrient content on fruit yield and fruit quality is very important.To explore the effect of soil nutrients on apple quality we investigated 200 fruit samples from 40 orchards in Feng County,Jiangsu Province.Soil mineral elements and fruit quality were measured.The effect of soil nutrient content on fruit quality was analyzed by artificial neural network(ANN)model.The results showed that the prediction accuracy was highest(R2=0.851,0.847,0.885,0.678 and 0.746)in mass per fruit(MPF),hardness(HB),soluble solids concentrations(SSC),titratable acid concentration(TA)and solid-acid ratio(SSC/TA),respectively.The sensitivity analysis of the prediction model showed that soil available P,K,Ca and Mg contents had the greatest impact on the quality of apple fruit.Response surface method(RSM)was performed to determine the optimum range of the available P,K,Ca,and Mg contents in orchards In Feng County,which were 10∼20 mg⋅kg^(−1),170∼200 mg⋅kg^(−1),1000∼1500 mg⋅kg^(−1),and 80∼200 mg⋅kg^(−1),respectively.The research also concluded that improving the content of available P and available Ca in orchard soil was crucial to improve apple fruit quality in Feng County,Jiangsu Province. 展开更多
关键词 APPLE soil nutrients fruit quality artificial neural network sensitivity analysis response surface methodology analysis
下载PDF
Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China
12
作者 HE Tian LIU Fuyuan +1 位作者 WANG Ao FEI Zhanbo 《Chinese Geographical Science》 SCIE CSCD 2023年第4期751-763,共13页
Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather sta... Air temperature(Ta)datasets with high spatial and temporal resolutions are needed in a wide range of applications,such as hydrology,ecology,agriculture,and climate change studies.Nonetheless,the density of weather station networks is insufficient,especially in sparsely populated regions,greatly limiting the accuracy of estimates of spatially distributed Ta.Due to their continuous spatial coverage,remotely sensed land surface temperature(LST)data provide the possibility of exploring spatial estimates of Ta.However,because of the complex interaction of land and climate,retrieval of Ta from the LST is still far from straightforward.The estimation accuracy varies greatly depending on the model,particularly for maximum Ta.This study estimated monthly average daily minimum temperature(Tmin),average daily maximum temperature(Tmax)and average daily mean temperature(Tmean)over the Loess Plateau in China based on Moderate Resolution Imaging Spectroradiometer(MODIS)LST data(MYD11A2)and some auxiliary data using an artificial neural network(ANN)model.The data from 2003 to 2010 were used to train the ANN models,while 2011 to 2012 weather station temperatures were used to test the trained model.The results showed that the nighttime LST and mean LST provide good estimates of Tmin and Tmean,with root mean square errors(RMSEs)of 1.04℃ and 1.01℃,respectively.Moreover,the best RMSE of Tmax estimation was 1.27℃.Compared with the other two published Ta gridded datasets,the produced 1 km×1 km dataset accurately captured both the temporal and spatial patterns of Ta.The RMSE of Tmin estimation was more sensitive to elevation,while that of Tmax was more sensitive to month.Except for land cover type as the input variable,which reduced the RMSE by approximately 0.01℃,the other vegetation-related variables did not improve the performance of the model.The results of this study indicated that ANN,a type of machine learning method,is effective for long-term and large-scale Ta estimation. 展开更多
关键词 air temperature land surface temperature(LST) artificial neural network(ann) remote sensing climate change Loess Plateau China
下载PDF
Improvement of atmospheric jet-array plasma uniformity assisted by artificial neural networks
13
作者 郑树磊 聂秋月 +2 位作者 黄韬 侯春风 王晓钢 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期105-118,共14页
Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structure... Atmospheric pressure plasma jet(APPJ)arrays have shown a potential in a wide range of applications ranging from material processing to biomedicine.In these applications,targets with complex three-dimensional structures often easily affect plasma uniformity.However,the uniformity is usually crucially important in application areas such as biomedicine,etc.In this work,the flow and electric field collaborative modulations are used to improve the uniformity of the plasma downstream.Taking a two-dimensional sloped metallic substrate with a 10°inclined angle as an example,the influences of both flow and electric field on the electron and typical active species distributions downstream are studied based on a multi-field coupling model.The electric and flow fields modulations are first separately applied to test the influence.Results show that the electric field modulation has an obvious improvement on the uniformity of plasma while the flow field modulation effect is limited.Based on such outputs,a collaborative modulation of both fields is then applied,and shows a much better effect on the uniformity.To make further advances,a basic strategy of uniformity improvement is thus acquired.To achieve the goal,an artificial neural network method with reasonable accuracy is then used to predict the correlation between plasma processing parameters and downstream uniformity properties for further improvement of the plasma uniformity.An optional scheme taking advantage of the flexibility of APPJ arrays is then developed for practical demands. 展开更多
关键词 atmospheric pressure plasma jet-array multi-field coupling and modulation artificial neural network(ann)
下载PDF
Multi-style Chord Music Generation Based on Artificial Neural Network
14
作者 郁进明 陈壮 海涵 《Journal of Donghua University(English Edition)》 CAS 2023年第4期428-437,共10页
With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord m... With the continuous development of deep learning and artificial neural networks(ANNs), algorithmic composition has gradually become a hot research field. In order to solve the music-style problem in generating chord music, a multi-style chord music generation(MSCMG) network is proposed based on the previous ANN for creation. A music-style extraction module and a style extractor are added by the network on the original basis;the music-style extraction module divides the entire music content into two parts, namely the music-style information Mstyleand the music content information Mcontent. The style extractor removes the music-style information entangled in the music content information. The similarity of music generated by different models is compared in this paper. It is also evaluated whether the model can learn music composition rules from the database. Through experiments, it is found that the model proposed in this paper can generate music works in the expected style. Compared with the long short term memory(LSTM) network, the MSCMG network has a certain improvement in the performance of music styles. 展开更多
关键词 algorithmic composition artificial neural network(ann) multi-style chord music generation network
下载PDF
Artificial neural network analysis of the day of the week anomaly in cryptocurrencies
15
作者 Nuray Tosunoğlu Hilal Abacı +1 位作者 Gizem Ateş Neslihan SaygılıAkkaya 《Financial Innovation》 2023年第1期2558-2581,共24页
Anomalies,which are incompatible with the efficient market hypothesis and mean a deviation from normality,have attracted the attention of both financial investors and researchers.A salient research topic is the existe... Anomalies,which are incompatible with the efficient market hypothesis and mean a deviation from normality,have attracted the attention of both financial investors and researchers.A salient research topic is the existence of anomalies in cryptocurrencies,which have a different financial structure from that of traditional financial markets.This study expands the literature by focusing on artificial neural networks to compare different currencies of the cryptocurrency market,which is hard to predict.It aims to investigate the existence of the day-of-the-week anomaly in cryptocurrencies with feedforward artificial neural networks as an alternative to traditional methods.An artificial neural network is an effective approach that can model the nonlinear and complex behavior of cryptocurrencies.On October 6,2021,Bitcoin(BTC),Ethereum(ETH),and Cardano(ADA),which are the top three cryptocurrencies in terms of market value,were selected for this study.The data for the analysis,consisting of the daily closing prices for BTC,ETH,and ADA,were obtained from the Coinmarket.com website from January 1,2018 to May 31,2022.The effectiveness of the established models was tested with mean squared error,root mean squared error,mean absolute error,and Theil’s U1,and R2 OOS was used for out-of-sample.The Diebold–Mariano test was used to statistically reveal the difference between the out-of-sample prediction accuracies of the models.When the models created with feedforward artificial neural networks are examined,the existence of the day-of-the-week anomaly is established for BTC,but no day-of-the-week anomaly for ETH and ADA was found. 展开更多
关键词 Cryptocurrency Bitcoin Ethereum Cardano Day-of-the-week anomaly artificial neural network
下载PDF
Backflow Transformation for A=3 Nuclei with Artificial Neural Networks
16
作者 YANG Yilong ZHAO Pengwei 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第4期673-678,共6页
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif... A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy. 展开更多
关键词 nuclear many-body problem quantum Monte Carlo artificial neural network backflow transformation
下载PDF
A higher prediction accuracy–based alpha–beta filter algorithm using the feedforward artificial neural network
17
作者 Junaid Khan Eunkyu Lee Kyungsup Kim 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1124-1139,共16页
The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new pred... The alpha–beta filter algorithm has been widely researched for various applications,for example,navigation and target tracking systems.To improve the dynamic performance of the alpha–beta filter algorithm,a new prediction learning model is proposed in this study.The proposed model has two main components:(1)the alpha–beta filter algorithm is the main prediction module,and(2)the learning module is a feedforward artificial neural network(FF‐ANN).Furthermore,the model uses two inputs,temperature sensor and humidity sensor data,and a prediction algorithm is used to predict actual sensor readings from noisy sensor readings.Using the novel proposed technique,prediction accuracy is significantly improved while adding the feed‐forward backpropagation neural network,and also reduces the root mean square error(RMSE)and mean absolute error(MAE).We carried out different experiments with different experimental setups.The proposed model performance was evaluated with the traditional alpha–beta filter algorithm and other algorithms such as the Kalman filter.A higher prediction accuracy was achieved,and the MAE and RMSE were 35.1%–38.2%respectively.The final proposed model results show increased performance when compared to traditional methods. 展开更多
关键词 alpha beta filter artificial neural network navigation prediction accuracy target tracking problems
下载PDF
Fractional Order Environmental and Economic Model Investigations Using Artificial Neural Network
18
作者 Wajaree Weera Chantapish Zamart +5 位作者 Zulqurnain Sabir Muhammad Asif Zahoor Raja Afaf S.Alwabli S.R.Mahmoud Supreecha Wongaree Thongchai Botmart 《Computers, Materials & Continua》 SCIE EI 2023年第1期1735-1748,共14页
The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE m... The motive of these investigations is to provide the importance and significance of the fractional order(FO)derivatives in the nonlinear environmental and economic(NEE)model,i.e.,FO-NEE model.The dynamics of the NEE model achieves more precise by using the form of the FO derivative.The investigations through the non-integer and nonlinear mathematical form to define the FO-NEE model are also provided in this study.The composition of the FO-NEEmodel is classified into three classes,execution cost of control,system competence of industrial elements and a new diagnostics technical exclusion cost.The mathematical FO-NEE system is numerically studied by using the artificial neural networks(ANNs)along with the Levenberg-Marquardt backpropagation method(ANNs-LMBM).Three different cases using the FO derivative have been examined to present the numerical performances of the FO-NEE model.The data is selected to solve the mathematical FO-NEE system is executed as 70%for training and 15%for both testing and certification.The exactness of the proposed ANNs-LMBM is observed through the comparison of the obtained and the Adams-Bashforth-Moulton database results.To ratify the aptitude,validity,constancy,exactness,and competence of the ANNs-LMBM,the numerical replications using the state transitions,regression,correlation,error histograms and mean square error are also described. 展开更多
关键词 Environmental and economic model artificial neural networks fractional order NONLINEAR Levenberg-Marquardt backpropagation
下载PDF
Damage assessment of aircraft wing subjected to blast wave with finite element method and artificial neural network tool
19
作者 Meng-tao Zhang Yang Pei +1 位作者 Xin Yao Yu-xue Ge 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期203-219,共17页
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ... Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures. 展开更多
关键词 VULNERABILITY Wing structural damage Blast wave Battle damage assessment Back-propagation artificial neural network
下载PDF
Artificial neural network algorithm for pulse shape discrimination in 2πα and 2πβ particle surface emission rate measurements
20
作者 Yuan-Qiao Li Bao-Ji Zhu +4 位作者 Yang Lv Heng Zhu Min Lin Ke-Sheng Chen Li-Jun Xu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期91-102,共12页
To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN... To enhance the accuracy of 2πα and 2πβ particle surface emission rate measurements and address the identification issues of nuclides in conventional methods, this study introduces two artificial neural network(ANN) algorithms: back-propagation(BP) and genetic algorithm-based back-propagation(GA-BP). These algorithms classify pulse signals from distinct α and β particles. Their discrimination efficacy is assessed by simulating standard pulse signals and those produced by contaminated sources, mixing α and β particles within the detector. This study initially showcases energy spectrum measurement outcomes, subsequently tests the ANNs on the measurement and validation datasets, and contrasts the pulse shape discrimination efficacy of both algorithms. Experimental findings reveal that the proportional counter's energy resolution is not ideal, thus rendering energy analysis insufficient for distinguishing between 2πα and 2πβ particles. The BP neural network realizes approximately 99% accuracy for 2πα particles and approximately 95% for 2πβ particles, thus surpassing the GA-BP's performance. Additionally, the results suggest enhancing β particle discrimination accuracy by increasing the digital acquisition card's threshold lower limit. This study offers an advanced solution for the 2πα and 2πβ surface emission rate measurement method, presenting superior adaptability and scalability over conventional techniques. 展开更多
关键词 Pulse shape discrimination artificial neural networks Alpha and beta sources Multi-wire proportional counter Surface emission rate
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部