期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak 被引量:10
1
作者 A.Sayadi M.Monjezi +1 位作者 N.Talebi Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期318-324,共7页
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and... In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter. 展开更多
关键词 Rock fragmentation backbreak artificial neural network back propagation Radial basis function
下载PDF
Artificial neural network approach for rheological characteristics of coal-water slurry using microwave pre-treatment 被引量:3
2
作者 B.K.Sahoo S.De B.C.Meikap 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期379-386,共8页
Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheol... Detailed experimental investigations were carried out for microwave pre-treatment of high ash Indian coal at high power level(900 W) in microwave oven. The microwave exposure times were fixed at60 s and 120 s. A rheology characteristic for microwave pre-treatment of coal-water slurry(CWS) was performed in an online Bohlin viscometer. The non-Newtonian character of the slurry follows the rheological model of Ostwald de Waele. The values of n and k vary from 0.31 to 0.64 and 0.19 to 0.81 Pa·sn,respectively. This paper presents an artificial neural network(ANN) model to predict the effects of operational parameters on apparent viscosity of CWS. A 4-2-1 topology with Levenberg-Marquardt training algorithm(trainlm) was selected as the controlled ANN. Mean squared error(MSE) of 0.002 and coefficient of multiple determinations(R^2) of 0.99 were obtained for the outperforming model. The promising values of correlation coefficient further confirm the robustness and satisfactory performance of the proposed ANN model. 展开更多
关键词 Microwave pre-treatment Coal-water slurry Apparent viscosity artificial neural network back propagation algorithm
下载PDF
Performance prediction of gravity concentrator by using artificial neural network-a case study 被引量:3
3
作者 Panda Lopamudra Tripathy Sunil Kumar 《International Journal of Mining Science and Technology》 SCIE EI 2014年第4期461-465,共5页
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ... In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values. 展开更多
关键词 Chromite artificial neural network Wet shaking table Performance prediction back propagation algorithm
下载PDF
Artificial Neural Network and Full Factorial Design Assisted AT-MRAM on Fe Oxides, Organic Materials, and Fe/Mn Oxides in Surficial Sediments 被引量:1
4
作者 GAO Qian WANG Zhi-zeng WANG Qian LI Shan-shan LI Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第6期944-948,共5页
Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surf... Artificial neural network(ANN) and full factorial design assisted atrazine(AT) multiple regression adsorption model(AT-MRAM) were developed to analyze the adsorption capability of the main components in the surficial sediments(SSs). Artificial neural network was used to build a model(the determination coefficient square r2 is 0.9977) to describe the process of atrazine adsorption onto SSs, and then to predict responses of the full factorial design. Based on the results of the full factorial design, the interactions of the main components in SSs on AT adsorption were investigated through the analysis of variance(ANOVA), F-test and t-test. The adsorption capability of the main components in SSs for AT was calculated via a multiple regression adsorption model(MRAM). The results show that the greatest contribution to the adsorption of AT on a molar basis was attributed to Fe/Mn(–1.993 μmol/mol). Organic materials(OMs) and Fe oxides in SSs are the important adsorption sites for AT, and the adsorption capabilities are 1.944 and 0.418 μmol/mol, respectively. The interaction among the non-residual components(Fe, Mn oxides and OMs) in SSs interferes in the adsorption of AT that shouldn’t be neglected, revealing the significant contribution of the interaction among non-residual components to controlling the behavior of AT in aquatic environments. 展开更多
关键词 back propagation(BP) artificial neural network Full factorial design Fe/Mn oxide Organic material ATRAZINE Interaction
下载PDF
Microstructure quantification of Cu-4.7Sn alloys prepared by two-phase zone continuous casting and a BP artificial neural network model for microstructure prediction 被引量:2
5
作者 Ji-Hui Luo Xue-Feng Liu +1 位作者 Zhang-Zhi Shi Yi-Fei Liu 《Rare Metals》 SCIE EI CAS CSCD 2019年第12期1124-1130,共7页
Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at l... Microstructures of Cu-4.7Sn(%) alloys prepared by two-phase zone continuous casting(TZCC)technology contain large columnar grains and small grains.A compound grain structure,composed of a large columnar grain and at least one small grain within it,is observed and called as grain-covered grains(GCGs).Distribution of small grains,their numbers and sizes as well as numbers and sizes of columnar grains were characterized quantitatively by metallographic microscope.Back propagation(BP) artificial neural network was employed to build a model to predict microstructures produced by different processing parameters.Inputs of the model are five processing parameters,which are temperatures of melt,mold and cooling water,speed of TZCC,and cooling distance.Outputs of the model are nine microstructure quantities,which are numbers of small grains within columnar grains,at the boundaries of the columnar grains,or at the surface of the alloy,the maximum and the minimum numbers of small grains within a columnar grain,numbers of columnar grains with or without small grains,and sizes of small grains and columnar grains.The model yields precise prediction,which lays foundation for controlling microstructures of alloys prepared by TZCC. 展开更多
关键词 Two-phase zone continuous casting Cu-Sn alloy Grains-covered grains Microstructure quantification back propagation artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部