期刊文献+
共找到6,334篇文章
< 1 2 250 >
每页显示 20 50 100
Line Fault Detection of DC Distribution Networks Using the Artificial Neural Network
1
作者 Xunyou Zhang Chuanyang Liu Zuo Sun 《Energy Engineering》 EI 2023年第7期1667-1683,共17页
ADC distribution network is an effective solution for increasing renewable energy utilization with distinct benefits,such as high efficiency and easy control.However,a sudden increase in the current after the occurren... ADC distribution network is an effective solution for increasing renewable energy utilization with distinct benefits,such as high efficiency and easy control.However,a sudden increase in the current after the occurrence of faults in the network may adversely affect network stability.This study proposes an artificial neural network(ANN)-based fault detection and protection method for DC distribution networks.The ANN is applied to a classifier for different faults ontheDC line.The backpropagationneuralnetwork is used to predict the line current,and the fault detection threshold is obtained on the basis of the difference between the predicted current and the actual current.The proposed method only uses local signals,with no requirement of a strict communication link.Simulation experiments are conducted for the proposed algorithm on a two-terminal DC distribution network modeled in the PSCAD/EMTDC and developed on the MATLAB platform.The results confirm that the proposed method can accurately detect and classify line faults within a few milliseconds and is not affected by fault locations,fault resistance,noise,and communication delay. 展开更多
关键词 artificial neural network DC distribution network fault detection
下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system
2
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
下载PDF
Research on Rotating Machinery Fault Diagnosis Based on Improved Multi-target Domain Adversarial Network
3
作者 Haitao Wang Xiang Liu 《Instrumentation》 2024年第1期38-50,共13页
Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery... Aiming at the problems of low efficiency,poor anti-noise and robustness of transfer learning model in intelligent fault diagnosis of rotating machinery,a new method of intelligent fault diagnosis of rotating machinery based on single source and multi-target domain adversarial network model(WDMACN)and Gram Angle Product field(GAPF)was proposed.Firstly,the original one-dimensional vibration signal is preprocessed using GAPF to generate the image data including all time series.Secondly,the residual network is used to extract data features,and the features of the target domain without labels are pseudo-labeled,and the transferable features among the feature extractors are shared through the depth parameter,and the feature extractors of the multi-target domain are updated anatomically to generate the features that the discriminator cannot distinguish.The modelt through adversarial domain adaptation,thus achieving fault classification.Finally,a large number of validations were carried out on the bearing data set of Case Western Reserve University(CWRU)and the gear data.The results show that the proposed method can greatly improve the diagnostic efficiency of the model,and has good noise resistance and generalization. 展开更多
关键词 multi-target domain domain-adversarial neural networks transfer learning rotating machinery fault diagnosis
下载PDF
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
4
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis BISPECTRUM artificial neural networks Article
下载PDF
Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM
5
作者 Chunming Wu Shupeng Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第6期4395-4411,共17页
Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fa... Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently.To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios,a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network(MSCNN)and Long Short-Term Memory(LSTM)fused with attention mechanism is proposed.To adaptively extract the essential spatial feature information of various sizes,the model creates a multi-scale feature extraction module using the convolutional neural network(CNN)learning process.The learning capacity of LSTM for time information sequence is then used to extract the vibration signal’s temporal feature information.Two parallel large and small convolutional kernels teach the system spatial local features.LSTM gathers temporal global features to thoroughly and painstakingly mine the vibration signal’s characteristics,thus enhancing model generalization.Lastly,bearing fault diagnosis is accomplished by using the SoftMax classifier.The experiment outcomes demonstrate that the model can derive fault properties entirely from the initial vibration signal.It can retain good diagnostic accuracy under variable load and noise interference and has strong generalization compared to other fault diagnosis models. 展开更多
关键词 Bearing fault diagnosis convolutional neural network short-long-term memory network feature fusion
下载PDF
Fault detection and diagnosis of permanent-magnetic DC motors based on current analysis and BP neural networks 被引量:1
6
作者 刘曼兰 朱春波 王铁成 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期266-270,共5页
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n... In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper. 展开更多
关键词 DC motor current analysis BP neural networks fault detection fault diagnosis
下载PDF
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis 被引量:4
7
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety fault diagnosis Process systems Long short-term memory Attention mechanism neural networks
下载PDF
SIMULATION INVESTIGATION OF AEROENGINE FAULT DIAGNOSIS USING NEURAL NETWORKS 被引量:3
8
作者 叶志锋 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期157-163,共7页
Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the p... Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the potential to provide maintenance personnel with valuable information for detecting and diagnosing engine faults. In this paper, an RBF neural network approach is applied to aeroengine gas path fault diagnosis. It can detect multiple faults and quantify the amount of deterioration of the various engine components as a function of measured parameters. The results obtained demonstrate that the accuracy of diagnosis is consistent with practical requirements. The approach takes advantage of the nonlinear mapping feature of neural networks to capture the appropriate characteristics of an aeroengine. The methodology is generic and applicable to other similar plants having high complexity. 展开更多
关键词 neural network fault diagnosis AEROENGINE
下载PDF
Application of neural network in heating network leakage fault diagnosis 被引量:2
9
作者 雷翠红 邹平华 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期173-176,共4页
In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of al... In order to investigate the leak detection strategy of a heating network,a space-based simulation mathematical model for the heating network under leakage conditions is built by graph theory.The pressure changes of all the nodes in the heating network are obtained from node leak and pipe leak conditions.Then,a leakage diagnosis system based on the back propagation(BP)neural network is established.This diagnosis system can predict the leakage pipe by collecting the pressure change data of the monitoring points,which can preliminary estimate the leak location.The usefulness of this system is proved by an example.The experimental results show that the forecast accuracy by this diagnosis system can reach 100%. 展开更多
关键词 heating network fault diagnosis artificial neural network
下载PDF
Intelligent Fault Diagnosis for Planetary Gearbox Using Transferable Deep Q Network Under Variable Conditions with Small Training Data 被引量:1
10
作者 Hui Wang Jiawen Xu Ruqiang Yan 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第1期30-41,共12页
Effective fault diagnosis of planetary gearboxes is critical for ensuring the safety and dependability of mechanical drive systems.Nevertheless,variable conditions and inadequate fault data bring huge challenges to it... Effective fault diagnosis of planetary gearboxes is critical for ensuring the safety and dependability of mechanical drive systems.Nevertheless,variable conditions and inadequate fault data bring huge challenges to its practical fault diagnosis.Taking this into account,this study presents a new intelligent fault diagnosis(IFD)approach for planetary gearbox using a transferable deep Q network(TDQN)that merges deep reinforcement learning(DRL)and transfer learning(TL).First,a DRL environment simulation is designed by a predefined classification Markov decision process.Then,leveraging varied-size convolutions and residual learning,a multiscale residual convolutional neural network agent for TDQN is created to automatically learn meaningful features directly from vibration signals while avoiding model degradation.Next,a large source dataset is obtained from complex conditions,and this agent learns an IFD policy via autonomous interaction with the data environment.Finally,a parameter-based TL strategy is adopted to retrain the model on target datasets with variable conditions and small training data,which is conducted by fine-tuning the model parameters gained from the source task to accomplish target tasks.The results show that this TDQN outperforms not only state-of-the-art methods in a source task with an accuracy of 98.53%but also in two target tasks with 99.63%and 98.37%,respectively. 展开更多
关键词 convolutional neural network deep reinforcement learning GEARBOX fault diagnosis transfer learning
下载PDF
APPLICATION OF ASSOCIATIVE MEMORY NEURAL NETWORK IN HIGH VOLTAGE TRANSMISSIONLINE FAULT DIAGNOSIS
11
作者 姜惠兰 孙雅明 《Transactions of Tianjin University》 EI CAS 1999年第1期36-41,共6页
Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),t... Effective methods of enhancing the fault-tolerance property are proposed for two kinds of associative memory (AM) neural network (NN) used in high voltage transmission line fault diagnosis. For feedforward NN (FNN),the conception of 'fake attaction region' is presented to expand the attraction region artificially,and for the feedback Hopfield bidirectional AM NN (BAM-NN),the measure to add redundant neurons is taken to enhance NN's memory capacity and fault-tolerance property. Study results show that the NNs built not only can complete fault diagnosis correctly but also have fairly high fault-tolerance ability for disturbed input information sequence. Moreover FNN is a more convenient and effective method of solving the problem of power system fault diagnosis. 展开更多
关键词 neural network power system fault diagnosis fault-tolerance property
下载PDF
Fault-tolerant FADS system development for a hypersonic vehicle via neural network algorithms
12
作者 Qian Wan Minjie Zhang +1 位作者 Guang Zuo Tianbo Xie 《Theoretical & Applied Mechanics Letters》 CSCD 2023年第5期357-366,共10页
Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to p... Hypersonic vehicles suffer from extreme aerodynamic heating during flights, especially around the area of leading edge due to its small curvature. Therefore, flush air data sensing(FADS) system has been developed to perform accurate measurement of the air data parameters. In the present study, the method to develop the FADS algorithms with fail-operational capability for a sharp-nosed hypersonic vehicle is provided. To be specific, the FADS system implemented with 16 airframe-integrated pressure ports is used as a case study. Numerical simulations of different freestream conditions have been conducted to generate the database for the FADS targeting in 2 ≤ Ma ≤ 5 and 0 km ≤ H ≤ 30 km. Four groups of neural network algorithms have been developed based on four different pressure port configurations, and the accuracy has been validated by 280 groups of simulations. Particularly, the algorithms based on the 16-port configuration show an excellent ability to serve as the main solver of the FADS, where 99. 5% of the angle-of-attack estimations are within the error band ±0. 2°. The accuracy of the algorithms is discussed in terms of port configuration. Furthermore, diagnosis of the system health is present in the paper. A fault-tolerant FADS system architecture has been designed, which is capable of continuously sensing the air data in the case that multi-port failure occurs, with a reduction in the system accuracy. 展开更多
关键词 FADS System Hypersonic vehicle neural network Numerical simulation fault detection Redundancy management
下载PDF
Artificial Neural Networks in Mechanical Fault Diagnosis
13
作者 Tong Shurong Chen Kai Northwestern Polytechnical University Xi’an 710072 P.R.ChinaZhou Sanchuan Eric T.T. Wong Hong Kong Polytechnic University 《International Journal of Plant Engineering and Management》 1997年第2期52-,54+56+58+53+55+57,共7页
s The methodology proposed in this paper that Artificial Neural Networks (ANNs) are used in mechanical fault diagnosis. It is discussed in detail that ANNs are applied in noise canceling, feature extraction and analy... s The methodology proposed in this paper that Artificial Neural Networks (ANNs) are used in mechanical fault diagnosis. It is discussed in detail that ANNs are applied in noise canceling, feature extraction and analysis, fault recognition and expert systems for fault diagnosis. ANNs are proved to be more effective and useful than traditional diagnosis methods. 展开更多
关键词 artificial neural networks fault diagnosis
下载PDF
APPROACH TO FAULT ON-LINE DETECTION AND DIAGNOSIS BASED ON NEURAL NETWORKS FOR ROBOT IN FMS
14
作者 Shi, Tianyun Zhang, Zhijing +1 位作者 Wang, Xinyi Zhu, Xiaoyan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第2期36-42,共7页
Based on radial basis function (RBF) neural networks, the healthy working model of each sub system of robot in FMS is established. A new approach to fault on line detection and diagnosis according to neural networks... Based on radial basis function (RBF) neural networks, the healthy working model of each sub system of robot in FMS is established. A new approach to fault on line detection and diagnosis according to neural networks model is presented. Fault double detection based on neural network model and threshold judgement and quick fault identification based on multi layer feedforward neural networks are applied, which can meet quickness and reliability of fault detection and diagnosis for robot in FMS. 展开更多
关键词 neural networks Robot in FMS fault detection fault diagnosis
全文增补中
Fault Detection and Diagnosis of Pneumatic Control Valve Based on a Hybrid Deep Learning Model
15
作者 HAO Hongtao WANG Kai 《Instrumentation》 2023年第4期12-26,共15页
As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in... As the growing requirements for the stability and safety of process industries,the fault detection and diagnosis of pneumatic control valves have crucial practical significance.Many of the approaches were presented in the literature to diagnose faults through the comparison of residual sequences with thresholds.In this study,a novel hybrid neural network model has been developed to address the issue of pneumatic control valve fault diagnosis.First,the feature extractor automatically extracts in-depth features of the signals through multi-scale convolutional neural networks with different kernel sizes,which not only adequately explores the local distinguishable features,but also takes into account the global features.The extracted features are then fused by the feature fusion layer to reduce redundant features.Finally,the long short-term memory for fault identification and the dense layer for fault classification.Experimental results demonstrate that the average test accuracy is above 94%and 16 out of the 19 conditions can be successfully detected in the simulated actual industrial environment.The effectiveness and practicability of the proposed method have been verified through a comparative analysis with existing intelligent fault diagnosis methods,and the results suggest that the developed model has better robustness. 展开更多
关键词 Pneumatic Control Valve Feature Fusion fault diagnosis Convolutional neural network Long Short-term Memory
下载PDF
Feature evaluation and extraction based on neural network in analog circuit fault diagnosis 被引量:16
16
作者 Yuan Haiying Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期434-437,共4页
Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature... Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method. 展开更多
关键词 fault diagnosis Feature extraction Analog circuit neural network Principal component analysis.
下载PDF
Fault detection and diagnosis for data incomplete industrial systems with new Bayesian network approach 被引量:15
17
作者 Zhengdao Zhang Jinlin Zhu Feng Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期500-511,共12页
For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-d... For the fault detection and diagnosis problem in largescale industrial systems, there are two important issues: the missing data samples and the non-Gaussian property of the data. However, most of the existing data-driven methods cannot be able to handle both of them. Thus, a new Bayesian network classifier based fault detection and diagnosis method is proposed. At first, a non-imputation method is presented to handle the data incomplete samples, with the property of the proposed Bayesian network classifier, and the missing values can be marginalized in an elegant manner. Furthermore, the Gaussian mixture model is used to approximate the non-Gaussian data with a linear combination of finite Gaussian mixtures, so that the Bayesian network can process the non-Gaussian data in an effective way. Therefore, the entire fault detection and diagnosis method can deal with the high-dimensional incomplete process samples in an efficient and robust way. The diagnosis results are expressed in the manner of probability with the reliability scores. The proposed approach is evaluated with a benchmark problem called the Tennessee Eastman process. The simulation results show the effectiveness and robustness of the proposed method in fault detection and diagnosis for large-scale systems with missing measurements. 展开更多
关键词 fault detection and diagnosis Bayesian network Gaussian mixture model data incomplete non-imputation.
下载PDF
Improved BP Neural Network for Transformer Fault Diagnosis 被引量:42
18
作者 SUN Yan-jing ZHANG Shen MIAO Chang-xin LI Jing-meng 《Journal of China University of Mining and Technology》 EI 2007年第1期138-142,共5页
The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nat... The back propagation (BP)-based artificial neural nets (ANN) can identify complicated relationships among dissolved gas contents in transformer oil and corresponding fault types, using the highly nonlinear mapping nature of the neural nets. An efficient BP-ALM (BP with Adaptive Learning Rate and Momentum coefficient) algorithm is proposed to reduce the training time and avoid being trapped into local minima, where the learning rate and the momentum coefficient are altered at iterations. We developed a system of transformer fault diagnosis based on Dissolved Gases Analysis (DGA) with a BP-ALM algorithm. Training patterns were selected from the results of a Refined Three-Ratio method (RTR). Test results show that the system has a better ability of quick learning and global convergence than other methods and a superior performance in fault diagnosis compared to convectional BP-based neural networks and RTR. 展开更多
关键词 transformer fault diagnosis BACK-PROPAGATION artificial neural network momentum coefficient
下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
19
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
下载PDF
Sensor Fault Diagnosis and Reconstruction of Engine Control System Based on Autoassociative Neural Network 被引量:7
20
作者 黄向华 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第1期23-27,共5页
The topology and property of Autoassociative Neural Networks(AANN) and theAANN's application to sensor fault diagnosis and reconstruction of engine control system arestudied. The key feature of AANN is feature ext... The topology and property of Autoassociative Neural Networks(AANN) and theAANN's application to sensor fault diagnosis and reconstruction of engine control system arestudied. The key feature of AANN is feature extract and noise filtering. Sensor fault detection isaccomplished by integrating the optimal estimation and fault detection logic. Digital simulationshows that the scheme can detect hard and soft failures of sensors at the absence of models forengines which have performance deteriorate in the service life, and can provide good analyticalredundancy. 展开更多
关键词 autoassociative neural network engine sensor fault diagnosis analyticalredundancy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部