期刊文献+
共找到142篇文章
< 1 2 8 >
每页显示 20 50 100
Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network 被引量:2
1
作者 YANG Xiao-hua HUANG Jing-feng +2 位作者 WANG Jian-wen WANG Xiu-zhen LIU Zhan-yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期883-895,共13页
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ... Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs. 展开更多
关键词 artificial neural network (ANN) radial basis function (RBF) Remote sensing RICE Vegetation index (VI)
下载PDF
Development of Trees Management System Using Radial Basis Function Neural Network for Rain Forecast 被引量:1
2
作者 Hasnul Auzani Khairusy Syakirin Has-Yun Farah Aniza Mohd Nazri 《Computational Water, Energy, and Environmental Engineering》 2022年第1期1-10,共10页
Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitabl... Agriculture and farming are mainly dependent on weather especially in Malaysia as it received heavy rainfall throughout the years. An efficient crop or tree management system with a weather forecast needed for suitable planning of farming operation. Radial Basis Function Neural Network (RBFNN) algorithm was used in this study to predict rainfall and the main focus of this study is to analyze the factor that affect</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the performance of neural model. This study found that the model works better the more hidden nodes and the optimum learning rate is 0.01 with the RMSE 49% and the percentage accuracy is 57%. Besides that, it is found that the meteorology data also affect the model performance. Future research can be conducted to improve the rainfall forecast of this study and improv</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">e</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the tree management system. 展开更多
关键词 Tree Management radial basis function Rain Prediction artificial neural Network
下载PDF
Sensitivity Analysis of Radial Basis Function Networks for River Stage Forecasting
3
作者 Christian Walker Dawson 《Journal of Software Engineering and Applications》 2020年第12期327-347,共21页
<div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addr... <div style="text-align:justify;"> <span style="font-family:Verdana;">Sensitivity analysis of neural networks to input variation is an important research area as it goes some way to addressing the criticisms of their black-box behaviour. Such analysis of RBFNs for hydrological modelling has previously been limited to exploring perturbations to both inputs and connecting weights. In this paper, the backward chaining rule that has been used for sensitivity analysis of MLPs, is applied to RBFNs and it is shown how such analysis can provide insight into physical relationships. A trigonometric example is first presented to show the effectiveness and accuracy of this approach for first order derivatives alongside a comparison of the results with an equivalent MLP. The paper presents a real-world application in the modelling of river stage shows the importance of such approaches helping to justify and select such models.</span> </div> 展开更多
关键词 artificial neural networks Backward Chaining Multi-Layer Perceptron Partial Derivative radial basis function Sensitivity Analysis River Stage Forecasting
下载PDF
Recovery of saturated signal waveform acquired from high-energy particles with artificial neural networks 被引量:4
4
作者 Yu Liu Jing-Jun Zhu +5 位作者 Neil Roberts Ke-Ming Chen Yu-Lu Yan Shuang-Rong Mo Peng Gu Hao-Yang Xing 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期30-39,共10页
Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in hi... Artificial neural networks(ANNs)are a core component of artificial intelligence and are frequently used in machine learning.In this report,we investigate the use of ANNs to recover the saturated signals acquired in highenergy particle and nuclear physics experiments.The inherent properties of the detector and hardware imply that particles with relatively high energies probably often generate saturated signals.Usually,these saturated signals are discarded during data processing,and therefore,some useful information is lost.Thus,it is worth restoring the saturated signals to their normal form.The mapping from a saturated signal waveform to a normal signal waveform constitutes a regression problem.Given that the scintillator and collection usually do not form a linear system,typical regression methods such as multi-parameter fitting are not immediately applicable.One important advantage of ANNs is their capability to process nonlinear regression problems.To recover the saturated signal,three typical ANNs were tested including backpropagation(BP),simple recurrent(Elman),and generalized radial basis function(GRBF)neural networks(NNs).They represent a basic network structure,a network structure with feedback,and a network structure with a kernel function,respectively.The saturated waveforms were produced mainly by the environmental gamma in a liquid scintillation detector for the China Dark Matter Detection Experiment(CDEX).The training and test data sets consisted of 6000 and 3000 recordings of background radiation,respectively,in which saturation was simulated by truncating each waveform at 40%of the maximum signal.The results show that the GBRF-NN performed best as measured using a Chi-squared test to compare the original and reconstructed signals in the region in which saturation was simulated.A comparison of the original and reconstructed signals in this region shows that the GBRF neural network produced the best performance.This ANN demonstrates a powerful efficacy in terms of solving the saturation recovery problem.The proposed method outlines new ideas and possibilities for the recovery of saturated signals in high-energy particle and nuclear physics experiments.This study also illustrates an innovative application of machine learning in the analysis of experimental data in particle physics. 展开更多
关键词 Saturated signals artificial neural networks(ANNs) RECOVERY of signal waveform Generalized radial basis function Backpropagation neural NETWORK ELMAN neural NETWORK
下载PDF
A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak 被引量:10
5
作者 A.Sayadi M.Monjezi +1 位作者 N.Talebi Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期318-324,共7页
In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and... In blasting operation,the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak.Therefore,predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome.Since many parameters affect the blasting results in a complicated mechanism,employment of robust methods such as artificial neural network may be very useful.In this regard,this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran.Back propagation neural network(BPNN) and radial basis function neural network(RBFNN) are adopted for the simulation.Also,regression analysis is performed between independent and dependent variables.For the BPNN modeling,a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN,architecture 636-2 with spread factor of 0.79 provides maximum prediction aptitude.Performance comparison of the developed models is fulfilled using value account for(VAF),root mean square error(RMSE),determination coefficient(R2) and maximum relative error(MRE).As such,it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error.Also,sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak,respectively.On the other hand,for both of the outputs,specific charge is the least effective parameter. 展开更多
关键词 Rock fragmentation Backbreak artificial neural network Back propagation radial basis function
下载PDF
Signal prediction based on empirical mode decomposition and artificial neural networks 被引量:1
6
作者 Wang Yong Liu Yanping Yang Jing 《Geodesy and Geodynamics》 2012年第1期52-56,共5页
In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way o... In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone. 展开更多
关键词 EMD (Empirical Mode Decomposition) ANN artificial neural networks MRME (Most Relevant Matching Extension) IMF (Intrinsic Mode function endpoint problem RBF radial basis function
下载PDF
Calculation method of ship collision force on bridge using artificial neural network 被引量:4
7
作者 Wei FAN Wan-cheng YUAN Qi-wu FAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期614-623,共10页
Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent st... Ship collision on bridge is a dynamic process featured by high nonlinearity and instantaneity. Calculating ship-bridge collision force typically involves either the use of design-specification-stipulated equivalent static load, or the use of finite element method (FEM) which is more time-consuming and requires supercomputing resources. In this paper, we proposed an alternative approach that combines FEM with artificial neural network (ANN). The radial basis function neural network (RBFNN) employed for calculating the impact force in consideration of ship-bridge collision mechanics. With ship velocity and mass as the input vectors and ship collision force as the output vector, the neural networks for different network parameters are trained by the learning samples obtained from finite element simulation results. The error analyses of the learning and testing samples show that the proposed RBFNN is accurate enough to calculate ship-bridge collision force. The input-output relationship obtained by the RBFNN is essentially consistent with the typical empirical formulae. Finally, a special toolbox is developed for calculation efficiency in application using MATLAB software. 展开更多
关键词 Ship-bridge collision force Finite element method (FEM) artificial neural network (ANN) radial basis function neural network (RBFNN)
下载PDF
Prediction of Salinity Variations in a Tidal Estuary Using Artificial Neural Network and Three-Dimensional Hydrodynamic Models
8
作者 Weibo Chen Wencheng Liu +1 位作者 Weiche Huang Hongming Liu 《Computational Water, Energy, and Environmental Engineering》 2017年第1期107-128,共22页
The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series ... The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system. 展开更多
关键词 SALINITY Variation artificial neural NETWORK Backpropagation Algorithm radial basis function neural NETWORK THREE-DIMENSIONAL Hydrodynamic Model TIDAL ESTUARY
下载PDF
基于机器学习预测环氧树脂复合材料抗冲击性能
9
作者 伍宝华 关留祥 方秀苇 《塑料工业》 CAS CSCD 北大核心 2024年第10期119-125,143,共8页
剩余压缩强度(RCS)是评价复合材料受到冲击损伤后力学性能的重要指标。采用声发射技术(AE)对玻璃纤维增强环氧树脂复合材料冲击载荷进行了在线监测,分析了振铃计数、峰值计数、信号强度和信号均方根值4种冲击载荷参数,采用人工神经元网... 剩余压缩强度(RCS)是评价复合材料受到冲击损伤后力学性能的重要指标。采用声发射技术(AE)对玻璃纤维增强环氧树脂复合材料冲击载荷进行了在线监测,分析了振铃计数、峰值计数、信号强度和信号均方根值4种冲击载荷参数,采用人工神经元网络(ANN)和径向基网络(RBF)基于冲击载荷参数预测了试件RCS。结果表明,高冲击能量造成了试件分层、玻璃纤维断裂、环氧树脂基体开裂、纤维脱黏,当冲击能量为10、15、20和30 J时,冲击3 ms后冲击能量达到最大值,分别为10.53、16.67、21.77和27.13 J,随后冲击能量不断下降。随着冲击能量的增加,试件冲击深度从0.18 mm增加到3.35 mm,RCS从56.87 MPa降低到20.45 MPa。最优ANN模型结构为4-48-1,预测和实验RCS的均方误差(MSE)最低为0.03 MPa,最优RBF模型结构为4-21-1,MSE最低为0.01。RBF模型的局部响应特性使得其对输入数据中的噪声具有较好的鲁棒性,预测与实验RCS数据的相关系数(R2)为0.9863,而ANN模型预测结果为0.9514。 展开更多
关键词 径向基网络 人工神经元网络 环氧树脂复合材料 声发射 剩余压缩强度
下载PDF
基于神经网络滑模的欠驱动船舶路径跟踪与避障协同控制
10
作者 田宇 刘志全 高妍南 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第5期144-152,共9页
【目的】针对存在模型不确定性和外界环境干扰的欠驱动船舶路径跟踪与避障问题,结合反演法与径向基函数(RBF)神经网络技术,提出一种神经网络滑模自适应控制律和改进的人工势场。【方法】首先根据误差方程设计辅助纵荡速度和艏摇角,然后... 【目的】针对存在模型不确定性和外界环境干扰的欠驱动船舶路径跟踪与避障问题,结合反演法与径向基函数(RBF)神经网络技术,提出一种神经网络滑模自适应控制律和改进的人工势场。【方法】首先根据误差方程设计辅助纵荡速度和艏摇角,然后分别对控制输入设计滑模面,并利用RBF神经网络逼近总未知项,设计控制律和自适应律。【结果与结论】Lyapunov稳定性分析证明闭环系统误差是一致最终有界的。对静态、动态障碍物分别改进人工势场,克服局部极小值问题以及未考虑船舶和障碍物的位置、相对速度关系问题。仿真对比结果表明,在海浪干扰下船舶路径跟踪误差收敛精度更高,且避障更安全。所提控制方法可改善路径跟踪与避障控制效果,验证了所提控制算法的有效性和鲁棒性。 展开更多
关键词 欠驱动船舶 路径跟踪 避障 反演法 径向基函数神经网络 滑模 人工势场法
下载PDF
Simulation and prediction of monthly accumulated runoff,based on several neural network models under poor data availability 被引量:1
11
作者 JianPing Qian JianPing Zhao +2 位作者 Yi Liu XinLong Feng DongWei Gui 《Research in Cold and Arid Regions》 CSCD 2018年第6期468-481,共14页
Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multila... Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multilayer perceptron artificial neural network(ANN). However, in runoff areas with relatively low rainfall or a dry climate, more studies are needed. In these areas—of which oasis-plain areas are a particularly good example—the existence and development of runoff depends largely on that which is generated from alpine regions. Quantitative analysis of the uncertainty of runoff simulation under climate change is the key to improving the utilization and management of water resources in arid areas. Therefore, in this context, three kinds of BP feed-forward, three-layer ANNs with similar structure were chosen as models in this paper.Taking the oasis–plain region traverse by the Qira River Basin in Xinjiang, China, as the research area, the monthly accumulated runoff of the Qira River in the next month was simulated and predicted. The results showed that the training precision of a compact wavelet neural network is low; but from the forecasting results, it could be concluded that the training algorithm can better reflect the whole law of samples. The traditional artificial neural network(TANN) model and radial basis-function neural network(RBFNN) model showed higher accuracy in the training and prediction stage. However, the TANN model, more sensitive to the selection of input variables, requires a large number of numerical simulations to determine the appropriate input variables and the number of hidden-layer neurons. Hence, The RBFNN model is more suitable for the study of such problems. And it can be extended to other similar research arid-oasis areas on the southern edge of the Kunlun Mountains and provides a reference for sustainable water-resource management of arid-oasis areas. 展开更多
关键词 OASIS artificial neural network radial basis function wavelet function runoff simulation
下载PDF
基于RBF-ANN GA的水下空化水射流喷嘴结构优化
12
作者 杨兴林 彭潇宇 《船舶工程》 CSCD 北大核心 2023年第11期85-90,共6页
为使空化水射流的性能满足船舶水下清洁的需求,对喷嘴结构进行优化,提出一种基于径向基函数(RBF)、人工神经网络(ANN)和遗传算法(GA)的水下空化水射流喷嘴结构优化方法。通过数值模拟计算设计参数(如入口段长度、收缩段长度、圆柱段长... 为使空化水射流的性能满足船舶水下清洁的需求,对喷嘴结构进行优化,提出一种基于径向基函数(RBF)、人工神经网络(ANN)和遗传算法(GA)的水下空化水射流喷嘴结构优化方法。通过数值模拟计算设计参数(如入口段长度、收缩段长度、圆柱段长度、扩散段长度、入口半径、圆柱段半径、收缩角和扩散角等)与空化性能参数轴线最大蒸汽体积分数的关系,通过RBF-ANN对该关系进行预测,解决采用GA进行结构优化时个体适应度难以计算的问题。将该方法与传统的方法进行对比,结果表明,该方法能快速且稳定地计算个体的适应度,相比传统方法能更有效地提升喷嘴的空化性能。 展开更多
关键词 喷嘴 空化水射流 径向基函数 人工神经网络 遗传算法 蒸汽体积分数
下载PDF
基于FA-RBF神经网络的导弹导引系统状态预测
13
作者 李海君 王文双 赵建忠 《弹箭与制导学报》 北大核心 2023年第1期1-7,共7页
导引系统是导弹组成部件中故障率相对较高的部分,对其状态进行预测和预防性维修是保持导弹完好率和保障作战效能的关键环节。导引系统具有内部组成复杂、测试指标繁多、系统状态难以确定等特点。为了快速准确地对导引系统进行状态预测,... 导引系统是导弹组成部件中故障率相对较高的部分,对其状态进行预测和预防性维修是保持导弹完好率和保障作战效能的关键环节。导引系统具有内部组成复杂、测试指标繁多、系统状态难以确定等特点。为了快速准确地对导引系统进行状态预测,提出一种基于FA-RBF神经网络的状态预测方法。该方法根据自动测试设备给出的系统测试指标数据,采用因子分析(factor analysis, FA)方法降维处理测试指标数据,得到潜在关键因子,并计算因子得分。然后以因子得分为输入,反映系统状态的内部测点为输出,建立训练样本,运用径向基函数(radial basis function, RBF)神经网络进行导引系统状态预测。最后通过示例说明方法的实用性和有效性。 展开更多
关键词 导弹导引系统 数据采集 因子分析 人工神经网络 RBF
下载PDF
径向基函数神经网络在大坝安全监测数据处理中的应用 被引量:22
14
作者 张晓春 徐晖 +1 位作者 邓念武 陈仁喜 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2003年第2期33-36,共4页
建立了大坝安全监测数据处理坝段挠度预测的径向基神经网络模型 ,与通常的BP神经网络模型进行对比 ,并与实测结果进行校核 .结果表明 ,对于所研究的问题 ,径向基函数网络避免了BP网络的局部极小及收敛速度慢等缺点 ,在精度。
关键词 径向基 人工神经网络 大坝安全监测
下载PDF
泄洪雾化预测的人工神经网络方法探讨 被引量:16
15
作者 柳海涛 孙双科 +1 位作者 刘之平 王晓松 《水利学报》 EI CSCD 北大核心 2005年第10期1241-1245,共5页
为了预测高坝泄洪雾化引起的降雨强度分布,本文提出了一种基于人工神经网络的雾化预报模型。该模型将泄洪流量、入水流速、入水角度以及三维河谷地形坐标等作为输入变量,对相应河谷地形内的雾化降雨强度分布进行预测。研究中采用了径向... 为了预测高坝泄洪雾化引起的降雨强度分布,本文提出了一种基于人工神经网络的雾化预报模型。该模型将泄洪流量、入水流速、入水角度以及三维河谷地形坐标等作为输入变量,对相应河谷地形内的雾化降雨强度分布进行预测。研究中采用了径向基函数(RBF)网络建模,并且通过在其激发函数中引入Sign-d函数,构造一种混合RBF网络,以改善模型的稳定性和泛化能力。通过东江水电站雾化原型观测资料检验,证明该网络模型在求解泄洪雾化降雨的空间分布方面是适宜而有效的。 展开更多
关键词 泄洪雾化 降雨强度 人工神经网络 RBF网络 BP网络 原型观测 东江水电站
下载PDF
新型RBF神经网络及在热工过程建模中的应用 被引量:51
16
作者 刘志远 吕剑虹 陈来九 《中国电机工程学报》 EI CSCD 北大核心 2002年第9期118-122,共5页
文中提出了一种基于免疫原理的新型径向基函数(RBF—Radial Basis Function)神经网络模型。该模型利用人工免疫系统的记忆、学习和自组织调节原理,进行RBF神经网络隐层中心数量和位置的选择,并采用递推最小二乘算法确定网络输出层的权... 文中提出了一种基于免疫原理的新型径向基函数(RBF—Radial Basis Function)神经网络模型。该模型利用人工免疫系统的记忆、学习和自组织调节原理,进行RBF神经网络隐层中心数量和位置的选择,并采用递推最小二乘算法确定网络输出层的权值。将这种新型的RBF神经网络应用于建立热工过程的非线性模型。仿真研究表明,这种建模方法不仅计算量较小,而且精度高,并有较好的泛化能力。 展开更多
关键词 锅炉 过热器 RBF神经网络 热工过程 建模
下载PDF
基于RBF神经网络的短期负荷预测方法综述 被引量:70
17
作者 彭显刚 胡松峰 吕大勇 《电力系统保护与控制》 EI CSCD 北大核心 2011年第17期144-148,共5页
介绍了基于RBF神经网络的电力系统短期负荷预测方法的相关概念,论述其具体实现途径。通过类比分析的方法对该类预测方法改进的过程进行回顾,指出其在实践中取得的进步。阐述了一些比较成熟的基于RBF神经网络预测模型的基本原理和技术特... 介绍了基于RBF神经网络的电力系统短期负荷预测方法的相关概念,论述其具体实现途径。通过类比分析的方法对该类预测方法改进的过程进行回顾,指出其在实践中取得的进步。阐述了一些比较成熟的基于RBF神经网络预测模型的基本原理和技术特点,并对它们进行了评价。根据电力系统运行的实际特点和面临的新情况,从算法改进、原始负荷数据筛选和如何结合实际负荷特点等三方面对该方法进行分析。探讨了该领域持续改进的发展空间,指出了该领域进一步发展的技术趋势。 展开更多
关键词 短期负荷预测 人工神经网络 RBF径向基神经网络 粒子群优化 智能单粒子优化
下载PDF
一种人工免疫与RBF神经网络结合的混合算法的应用 被引量:10
18
作者 周颖 郑德玲 +1 位作者 裘之亮 刘聪 《计算机工程与应用》 CSCD 北大核心 2004年第1期39-40,46,共3页
提出了一种人工免疫学习算法,该算法具有识别多样性、自我调节功能等特点。将该算法用于RBF神经网络隐层中心点数量和位置的调整,网络的输入数据作为抗原,抗体(RBF中心)作为抗原的内影像,输出采用最小二乘法。仿真结果表明,该混合算法... 提出了一种人工免疫学习算法,该算法具有识别多样性、自我调节功能等特点。将该算法用于RBF神经网络隐层中心点数量和位置的调整,网络的输入数据作为抗原,抗体(RBF中心)作为抗原的内影像,输出采用最小二乘法。仿真结果表明,该混合算法具有较强的泛化能力,而且精度高,效果好。 展开更多
关键词 人工免疫 RBF神经网络 中心点 混合算法
下载PDF
RBF神经网络在中长期负荷预测中的应用 被引量:46
19
作者 陈泽淮 张尧 武志刚 《电力系统及其自动化学报》 CSCD 北大核心 2006年第1期15-19,共5页
根据电力系统中长期负荷的特点和径向基函数(RBF)神经网络的非线性辨识功能,将RBF神经网络应用于中长期负荷预测的数据预处理,具体讨论了空缺数据的补全以及失真数据的查找和修正,并提出了一种改进的基于RBF神经网络的中长期负荷预测模... 根据电力系统中长期负荷的特点和径向基函数(RBF)神经网络的非线性辨识功能,将RBF神经网络应用于中长期负荷预测的数据预处理,具体讨论了空缺数据的补全以及失真数据的查找和修正,并提出了一种改进的基于RBF神经网络的中长期负荷预测模型。实际算例的分析表明,所提出的基于RBF神经网络的缺损数据处理方法和改进的中长期负荷预测模型是可行和有效的。 展开更多
关键词 中长期负荷预测 数据预处理 人工神经网络 径向基函数
下载PDF
基于径向基函数神经网络的GPS高程转换方法 被引量:15
20
作者 李红连 黄丁发 李春华 《中国公路学报》 EI CAS CSCD 北大核心 2006年第4期7-10,共4页
针对GPS高程与正常高程的转换问题,给出了基于径向基函数(Radial Basis Function,RBF)神经网络的模型。该模型隐含层选用Gauss函数作为基函数,学习算法采用自组织选取中心法策略。用实际观测数据进行了试验和仿真,结果表明,用RBF神经网... 针对GPS高程与正常高程的转换问题,给出了基于径向基函数(Radial Basis Function,RBF)神经网络的模型。该模型隐含层选用Gauss函数作为基函数,学习算法采用自组织选取中心法策略。用实际观测数据进行了试验和仿真,结果表明,用RBF神经网络转换GPS高程的精度优于最小二乘法。对RBF神经网络方法和反向传播(Back-Propagation,BP)神经网络方法转换GPS高程的精度进行了比较,虽然两种方法的结果相近,但RBF神经网络方法在学习速度方面远比BP神经网络方法快。由此可见,RBF神经网络方法用于转换GPS高程是可行和有效的。 展开更多
关键词 道路工程 GPS高程 人工神经网络 径向基函数
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部