An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in mat...An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples, the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.展开更多
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz...In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.展开更多
Prediction of surface finish in turning process is a difficult but important task. Artificial Neural Networks (ANN) can reliably pred ict the surface finish but require a lot of training data. To overcome this prob le...Prediction of surface finish in turning process is a difficult but important task. Artificial Neural Networks (ANN) can reliably pred ict the surface finish but require a lot of training data. To overcome this prob lem, an expert system approach is proposed, wherein it will be possible to predi ct the surface finish from limited experiments. The expert system contains a kno wledge base prepared from machining data handbooks and number of experiments con ducted by turning steel rods, over a wide range of cutting parameters. With this knowledge base, the expert system predicts surface finish for different tool-w ork-piece combinations, by carrying out few experiments for each case. The prop osed expert system model is validated by carrying out a number of experiments.展开更多
The maintenance and forecast expert system of equipment based on Artificial Neural Network is composed of control, measure, failure forecast, execution, data processing module and database. The data processing module ...The maintenance and forecast expert system of equipment based on Artificial Neural Network is composed of control, measure, failure forecast, execution, data processing module and database. The data processing module obtains the change of the controlled objects' structure and parameters, then takes correspondent measures according to the examination and diagnosis information. The failure forecast module finds the control system fault, separates the fault symptom location, tells the fault kind, estimates the magnitude and time of the fault, and finally makes evaluation and decision.展开更多
Using expert systems in intelligent CAD of electrical machines have limitations such as knowledge acquisition bottlenecks and matching conflict, combinatorial explosion, and endless recursion in the reasoning process....Using expert systems in intelligent CAD of electrical machines have limitations such as knowledge acquisition bottlenecks and matching conflict, combinatorial explosion, and endless recursion in the reasoning process. This paper discusses the principle of a hybrid system of a neural network and an expert system (HNNES), i.e., knowledge representation, reasoning mechanism, and knowledge acquisition based on neural networks. An architecture of HNNES is presented in consideration of the feature of the design of electrical machines.展开更多
The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the...The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the occurrence of 1 : 1 lanthanide intermetallic compounds with CsClstructure and the other for prediction of congruent or incongruent melting types, were developed. Four regression neural models were also developed for prediction of melting point of these compounds. In order to get rid of overfitting, cross-vahdation method was used for the neural models. And satisfactory results were obtained in all of the neural models in this paper.展开更多
In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule sampl...In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized.展开更多
In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in ...In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system.展开更多
Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BL...Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.展开更多
文摘An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples, the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.
文摘In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.
文摘Prediction of surface finish in turning process is a difficult but important task. Artificial Neural Networks (ANN) can reliably pred ict the surface finish but require a lot of training data. To overcome this prob lem, an expert system approach is proposed, wherein it will be possible to predi ct the surface finish from limited experiments. The expert system contains a kno wledge base prepared from machining data handbooks and number of experiments con ducted by turning steel rods, over a wide range of cutting parameters. With this knowledge base, the expert system predicts surface finish for different tool-w ork-piece combinations, by carrying out few experiments for each case. The prop osed expert system model is validated by carrying out a number of experiments.
文摘The maintenance and forecast expert system of equipment based on Artificial Neural Network is composed of control, measure, failure forecast, execution, data processing module and database. The data processing module obtains the change of the controlled objects' structure and parameters, then takes correspondent measures according to the examination and diagnosis information. The failure forecast module finds the control system fault, separates the fault symptom location, tells the fault kind, estimates the magnitude and time of the fault, and finally makes evaluation and decision.
文摘Using expert systems in intelligent CAD of electrical machines have limitations such as knowledge acquisition bottlenecks and matching conflict, combinatorial explosion, and endless recursion in the reasoning process. This paper discusses the principle of a hybrid system of a neural network and an expert system (HNNES), i.e., knowledge representation, reasoning mechanism, and knowledge acquisition based on neural networks. An architecture of HNNES is presented in consideration of the feature of the design of electrical machines.
文摘The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the occurrence of 1 : 1 lanthanide intermetallic compounds with CsClstructure and the other for prediction of congruent or incongruent melting types, were developed. Four regression neural models were also developed for prediction of melting point of these compounds. In order to get rid of overfitting, cross-vahdation method was used for the neural models. And satisfactory results were obtained in all of the neural models in this paper.
文摘In this paper,an approach is developed to optimize the quality of the training samples in the conventional Artificial Neural Network(ANN)by incorporating expert knowledge in the means of constructing expert-rule samples from rules in an expert system,and through training by using these samples,an ANN based on expert-knowledge is further developed.The method is introduced into the field of quantitative identification of potential seismic sources on the basis of the rules in an expert system.Then it is applied to the quantitative identification of the potential seismic sources in Beijing and its adjacent area.The result indicates that the expert rule based on ANN method can well incorporate and represent the expert knowledge in the rules in an expert system,and the quality of the samples and the efficiency of training and the accuracy of the result are optimized.
文摘In this paper, we first make a brief review on the fundamental properties of artificial neural networks (ANN) and the basic models, and explore emphatically some potential application of artificial neural networks in the area of product quality diagnosis, prediction and control, state supervision and classification, factor recognition, and expert system based diagnosis, then set up the ANN models and expert system for quality forecasting, monitoring and diagnosing. We point out that combining ANN with other techniques will have the broad development and application of perspectives. Finally, the paper gives out some practical applications for the models and the system.
基金the National Natural Science Fund of China(Approved No.79779986)
文摘Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail.