期刊文献+
共找到5,875篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Advances in Artificial Sensory Neurons:Biological Fundamentals,Devices,Applications,and Challenges
1
作者 Shuai Zhong Lirou Su +4 位作者 Mingkun Xu Desmond Loke Bin Yu Yishu Zhang Rong Zhao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期168-216,共49页
Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantage... Spike-based neural networks,which use spikes or action potentialsto represent information,have gained a lot of attention because of their high energyefficiency and low power consumption.To fully leverage its advantages,convertingthe external analog signals to spikes is an essential prerequisite.Conventionalapproaches including analog-to-digital converters or ring oscillators,and sensorssuffer from high power and area costs.Recent efforts are devoted to constructingartificial sensory neurons based on emerging devices inspired by the biologicalsensory system.They can simultaneously perform sensing and spike conversion,overcoming the deficiencies of traditional sensory systems.This review summarizesand benchmarks the recent progress of artificial sensory neurons.It starts with thepresentation of various mechanisms of biological signal transduction,followed bythe systematic introduction of the emerging devices employed for artificial sensoryneurons.Furthermore,the implementations with different perceptual capabilitiesare briefly outlined and the key metrics and potential applications are also provided.Finally,we highlight the challenges and perspectives for the future development of artificial sensory neurons. 展开更多
关键词 Artificial intelligence Emerging devices Artificial sensory neurons Spiking neural networks Neuromorphic sensing
下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data
2
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
下载PDF
Single-cell pan-omics, environmental neurology, and artificial intelligence:the time for holistic brain health research
3
作者 Paolo Abondio Francesco Bruno 《Neural Regeneration Research》 SCIE CAS 2025年第6期1703-1704,共2页
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t... The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks. 展开更多
关键词 function artificial LANDSCAPE
下载PDF
Smart Gas Sensors:Recent Developments and Future Prospective
4
作者 Boyang Zong Shufang Wu +3 位作者 Yuehong Yang Qiuju Li Tian Tao Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期55-86,共32页
Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart... Gas sensor is an indispensable part of modern society withwide applications in environmental monitoring,healthcare,food industry,public safety,etc.With the development of sensor technology,wireless communication,smart monitoring terminal,cloud storage/computing technology,and artificial intelligence,smart gas sensors represent the future of gassensing due to their merits of real-time multifunctional monitoring,earlywarning function,and intelligent and automated feature.Various electronicand optoelectronic gas sensors have been developed for high-performancesmart gas analysis.With the development of smart terminals and the maturityof integrated technology,flexible and wearable gas sensors play an increasingrole in gas analysis.This review highlights recent advances of smart gassensors in diverse applications.The structural components and fundamentalprinciples of electronic and optoelectronic gas sensors are described,andflexible and wearable gas sensor devices are highlighted.Moreover,sensorarray with artificial intelligence algorithms and smart gas sensors in“Internet of Things”paradigm are introduced.Finally,the challengesand perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living. 展开更多
关键词 Smart gas sensor Electronic sensor Optoelectronic sensor Flexible and wearable sensor Artificial intelligence
下载PDF
Relevance of epidemiology data in trauma management
5
作者 Krishna Kumar Govindarajan 《World Journal of Clinical Cases》 SCIE 2025年第9期65-67,共3页
Trauma is a major cause of morbidity and mortality across the globe accounting for significant health burden.Relevance of trauma care revolves round prevention,planning and execution of safety regulations.Acquisition ... Trauma is a major cause of morbidity and mortality across the globe accounting for significant health burden.Relevance of trauma care revolves round prevention,planning and execution of safety regulations.Acquisition of the actual data regarding the type of trauma,affected age group,timings of trauma occurrence,involved part of the body constitute the initial steps in the building of the composite overview of the epidemiology of trauma.In succession,would be the measures directed towards avoidance of trauma and capacity building of trauma center. 展开更多
关键词 TRAUMA EPIDEMIOLOGY INJURY Prevention TRIAGE REGISTRY Artificial Intelligence
下载PDF
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
6
作者 Petr Opela Josef Walek Jaromír Kopecek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期713-732,共20页
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al... In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis. 展开更多
关键词 Machine learning Gaussian process regression artificial neural networks support vector machine hot deformation behavior
下载PDF
Comparative analysis of empirical and deep learning models for ionospheric sporadic E layer prediction
7
作者 BingKun Yu PengHao Tian +6 位作者 XiangHui Xue Christopher JScott HaiLun Ye JianFei Wu Wen Yi TingDi Chen XianKang Dou 《Earth and Planetary Physics》 EI CAS 2025年第1期10-19,共10页
Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,... Sporadic E(Es)layers in the ionosphere are characterized by intense plasma irregularities in the E region at altitudes of 90-130 km.Because they can significantly influence radio communications and navigation systems,accurate forecasting of Es layers is crucial for ensuring the precision and dependability of navigation satellite systems.In this study,we present Es predictions made by an empirical model and by a deep learning model,and analyze their differences comprehensively by comparing the model predictions to satellite RO measurements and ground-based ionosonde observations.The deep learning model exhibited significantly better performance,as indicated by its high coefficient of correlation(r=0.87)with RO observations and predictions,than did the empirical model(r=0.53).This study highlights the importance of integrating artificial intelligence technology into ionosphere modelling generally,and into predicting Es layer occurrences and characteristics,in particular. 展开更多
关键词 ionospheric sporadic E layer radio occultation ionosondes numerical model deep learning model artificial intelligence
下载PDF
A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach
8
作者 Linlin Sun Zihui Wang +3 位作者 Shukun Cui Ziquan Yan Weiping Hu Qingchun Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期555-577,共23页
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ... Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time. 展开更多
关键词 Rail weld irregularity high-speed railway vehicle-track coupled dynamics wheel/rail dynamic vertical force artificial neural networks
下载PDF
Revolutionizing diabetic retinopathy screening and management:The role of artificial intelligence and machine learning
9
作者 Mona Mohamed Ibrahim Abdalla Jaiprakash Mohanraj 《World Journal of Clinical Cases》 SCIE 2025年第5期1-12,共12页
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma... Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare. 展开更多
关键词 Diabetic retinopathy Artificial intelligence Machine learning SCREENING MANAGEMENT Predictive analytics Personalized medicine
下载PDF
Gallbladder carcinoma in the era of artificial intelligence: Early diagnosis for better treatment
10
作者 Ismail AS Burud Sherreen Elhariri Nabil Eid 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期256-259,共4页
Gallbladder carcinoma(GBC)is the most common malignant tumor of biliary tract,with poor prognosis due to its aggressive nature and limited therapeutic options.Early detection of GBC is a major challenge,with most GBCs... Gallbladder carcinoma(GBC)is the most common malignant tumor of biliary tract,with poor prognosis due to its aggressive nature and limited therapeutic options.Early detection of GBC is a major challenge,with most GBCs being detected accidentally during cholecystectomy procedures for gallbladder stones.This letter comments on the recent article by Deqing et al in the World Journal of Gastrointestinal Oncology,which summarized the various current methods used in early diagnosis of GBC,including endoscopic ultrasound(EUS)examination of the gallbladder for high-risk GBC patients,and the use of EUS-guided elasto-graphy,contrast-enhanced EUS,trans-papillary biopsy,natural orifice translu-minal endoscopic surgery,magnifying endoscopy,choledochoscopy,and confocal laser endomicroscopy when necessary for early diagnosis of GBC.However,there is a need for novel methods for early GBC diagnosis,such as the use of artificial intelligence and non-coding RNA biomarkers for improved screening protocols.Additionally,the use of in vitro and animal models may provide critical insights for advancing early detection and treatment strategies of this aggressive tumor. 展开更多
关键词 Gallbladder carcinoma Endoscopic ultrasound BIOPSY ELASTOGRAPHY Cho-ledochoscopy Artificial intelligence Non-coding RNAs Screening Animal models In vitro studies
下载PDF
Recognition and quality mapping of traditional herbal drugs:way forward towards artificial intelligence
11
作者 Sanyam Sharma Subh Naman Ashish Baldi 《Traditional Medicine Research》 2025年第1期12-26,共15页
The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for ident... The use of traditional herbal drugs derived from natural sources is on the rise due to their minimal side effects and numerous health benefits.However,a major limitation is the lack of standardized knowledge for identifying and mapping the quality of these herbal medicines.This article aims to provide practical insights into the application of artificial intelligence for quality-based commercialization of raw herbal drugs.It focuses on feature extraction methods,image processing techniques,and the preparation of herbal images for compatibility with machine learning models.The article discusses commonly used image processing tools such as normalization,slicing,cropping,and augmentation to prepare images for artificial intelligence-based models.It also provides an overview of global herbal image databases and the models employed for herbal plant/drug identification.Readers will gain a comprehensive understanding of the potential application of various machine learning models,including artificial neural networks and convolutional neural networks.The article delves into suitable validation parameters like true positive rates,accuracy,precision,and more for the development of artificial intelligence-based identification and authentication techniques for herbal drugs.This article offers valuable insights and a conclusive platform for the further exploration of artificial intelligence in the field of herbal drugs,paving the way for smarter identification and authentication methods. 展开更多
关键词 artificial intelligence AYURVEDA machine learning models herbal drugs image pre-processing medicinal plants
下载PDF
Deep learning identification of novel autophagic protein-protein interactions and experimental validation of Beclin 2-Ubiquilin 1 axis in triple-negative breast cancer
12
作者 XIANG LI WENKE JIN +4 位作者 LIFENG WU HUAN WANG XIN XIE WEI HUANG BO LIU 《Oncology Research》 SCIE 2025年第1期67-81,共15页
Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autoph... Background:Triple-negative breast cancer(TNBC),characterized by its lack of traditional hormone receptors and HER2,presents a significant challenge in oncology due to its poor response to conventional therapies.Autophagy is an important process for maintaining cellular homeostasis,and there are currently autophagy biomarkers that play an effective role in the clinical treatment of tumors.In contrast to targeting protein activity,intervention with proteinprotein interaction(PPI)can avoid unrelated crosstalk and regulate the autophagy process with minimal interference pathways.Methods:Here,we employed Naive Bayes,Decision Tree,and k-Nearest Neighbors to elucidate the complex PPI network associated with autophagy in TNBC,aiming to uncover novel therapeutic targets.Meanwhile,the candidate proteins interacting with Beclin 2 were initially screened in MDA-MB-231 cells using Beclin 2 as bait protein by immunoprecipitation-mass spectrometry assay,and the interaction relationship was verified by molecular docking and CO-IP experiments after intersection.Colony formation,cellular immunofluorescence,cell scratch and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)tests were used to predict the clinical therapeutic effects of manipulating candidate PPI.Results:By developing three PPI classification models and analyzing over 13,000 datasets,we identified 3733 previously unknown autophagy-related PPIs.Our network analysis revealed the central role of Beclin 2 in autophagy regulation,uncovering its interactions with 39 newly identified proteins.Notably,the CO-IP studies identified the substantial interaction between Beclin 2 and Ubiquilin 1,which was anticipated by our model and discovered in immunoprecipitation-mass spectrometry assay results.Subsequently,in vitro investigations showed that overexpressing Beclin 2 increased Ubiquilin 1,promoted autophagy-dependent cell death,and inhibited proliferation and metastasis in MDA-MB-231 cells.Conclusions:This study not only enhances our understanding of autophagy regulation in TNBC but also identifies the Beclin 2-Ubiquilin 1 axis as a promising target for precision therapy.These findings open new avenues for drug discovery and offer inspiration for more effective treatments for this aggressive cancer subtype. 展开更多
关键词 Triple-negative breast cancer(TNBC) AUTOPHAGY Protein-protein interactions(PPI) Artificial intelligence(AI) Beclin 2 Ubiquilin 1
下载PDF
Machine learning applications in healthcare clinical practice and research
13
作者 Nikolaos-Achilleas Arkoudis Stavros P Papadakos 《World Journal of Clinical Cases》 SCIE 2025年第1期16-21,共6页
Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligen... Machine learning(ML)is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis,thus creating machines that can complete tasks otherwise requiring human intelligence.Among its various applications,it has proven groundbreaking in healthcare as well,both in clinical practice and research.In this editorial,we succinctly introduce ML applications and present a study,featured in the latest issue of the World Journal of Clinical Cases.The authors of this study conducted an analysis using both multiple linear regression(MLR)and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease(NAFLD).Their results implicated age as the most important determining factor in both groups,followed by lactic dehydrogenase,uric acid,forced expiratory volume in one second,and albumin.In addition,for the NAFLD-group,the 5th and 6th most important impact factors were thyroid-stimulating hormone and systolic blood pressure,as compared to plasma calcium and body fat for the NAFLD+group.However,the study's distinctive contribution lies in its adoption of ML methodologies,showcasing their superiority over traditional statistical approaches(herein MLR),thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research. 展开更多
关键词 Machine Learning Artificial INTELLIGENCE CLINICAL Practice RESEARCH Glomerular filtration rate Non-alcoholic fatty liver disease MEDICINE
下载PDF
Diabetes mellitus and glymphatic dysfunction:Roles for oxidative stress,mitochondria,circadian rhythm,artificial intelligence,and imaging
14
作者 Kenneth Maiese 《World Journal of Diabetes》 SCIE 2025年第1期39-48,共10页
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an... Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction. 展开更多
关键词 Artificial intelligence Circadian rhythm Clock genes Diabetes mellitus magnetic resonance imaging Glymphatic pathway MITOCHONDRIA Oxidative stress Programmed cell death Sleep fragmentation
下载PDF
Synthetic data as an investigative tool in hypertension and renal diseases research
15
作者 Aleena Jamal Som Singh Fawad Qureshi 《World Journal of Methodology》 2025年第1期9-13,共5页
There is a growing body of clinical research on the utility of synthetic data derivatives,an emerging research tool in medicine.In nephrology,clinicians can use machine learning and artificial intelligence as powerful... There is a growing body of clinical research on the utility of synthetic data derivatives,an emerging research tool in medicine.In nephrology,clinicians can use machine learning and artificial intelligence as powerful aids in their clinical decision-making while also preserving patient privacy.This is especially important given the epidemiology of chronic kidney disease,renal oncology,and hypertension worldwide.However,there remains a need to create a framework for guidance regarding how to better utilize synthetic data as a practical application in this research. 展开更多
关键词 Synthetic data Artificial intelligence NEPHROLOGY Blood pressure RESEARCH EDITORIAL
下载PDF
Harnessing artificial intelligence for identifying conflicts of interest in research
16
作者 Abdulqadir J Nashwan 《World Journal of Methodology》 2025年第1期6-8,共3页
This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recogni... This editorial explores the transformative potential of artificial intelligence(AI)in identifying conflicts of interest(COIs)within academic and scientific research.By harnessing advanced data analysis,pattern recognition,and natural language processing techniques,AI offers innovative solutions for enhancing transparency and integrity in research.This editorial discusses how AI can automatically detect COIs,integrate data from various sources,and streamline reporting processes,thereby maintaining the credibility of scientific findings. 展开更多
关键词 Artificial intelligence Conflicts of interest TRANSPARENCY Research integrity Natural language processing
下载PDF
Machine learning in solid organ transplantation:Charting the evolving landscape
17
作者 Badi Rawashdeh Haneen Al-abdallat +3 位作者 Emre Arpali Beje Thomas Ty B Dunn Matthew Cooper 《World Journal of Transplantation》 2025年第1期165-177,共13页
BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to ... BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation.ML provides revolutionary opportunities in areas such as donorrecipient matching,post-transplant monitoring,and patient care by automatically analyzing large amounts of data,identifying patterns,and forecasting outcomes.AIM To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications.METHODS On July 18,a thorough search strategy was used with the Web of Science database.ML and transplantation-related keywords were utilized.With the aid of the VOS viewer application,the identified articles were subjected to bibliometric variable analysis in order to determine publication counts,citation counts,contributing countries,and institutions,among other factors.RESULTS Of the 529 articles that were first identified,427 were deemed relevant for bibliometric analysis.A surge in publications was observed over the last four years,especially after 2018,signifying growing interest in this area.With 209 publications,the United States emerged as the top contributor.Notably,the"Journal of Heart and Lung Transplantation"and the"American Journal of Transplantation"emerged as the leading journals,publishing the highest number of relevant articles.Frequent keyword searches revealed that patient survival,mortality,outcomes,allocation,and risk assessment were significant themes of focus.CONCLUSION The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation.This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes.Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain. 展开更多
关键词 Machine learning Artificial Intelligence Solid organ transplantation Bibliometric analysis
下载PDF
Artificial sensory neurons and their applications
18
作者 Jiale Shao Hongwei Ying +6 位作者 Peihong Cheng Lingxiang Hu Xianhua Wei Zongxiao Li Huanming Lu Zhizhen Ye Fei Zhuge 《Journal of Semiconductors》 2025年第1期108-128,共21页
With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing archit... With the rapid development of artificial intelligence(AI)technology,the demand for high-performance and energyefficient computing is increasingly growing.The limitations of the traditional von Neumann computing architecture have prompted researchers to explore neuromorphic computing as a solution.Neuromorphic computing mimics the working principles of the human brain,characterized by high efficiency,low energy consumption,and strong fault tolerance,providing a hardware foundation for the development of new generation AI technology.Artificial neurons and synapses are the two core components of neuromorphic computing systems.Artificial perception is a crucial aspect of neuromorphic computing,where artificial sensory neurons play an irreplaceable role thus becoming a frontier and hot topic of research.This work reviews recent advances in artificial sensory neurons and their applications.First,biological sensory neurons are briefly described.Then,different types of artificial neurons,such as transistor neurons and memristive neurons,are discussed in detail,focusing on their device structures and working mechanisms.Next,the research progress of artificial sensory neurons and their applications in artificial perception systems is systematically elaborated,covering various sensory types,including vision,touch,hearing,taste,and smell.Finally,challenges faced by artificial sensory neurons at both device and system levels are summarized. 展开更多
关键词 artificial sensory neurons artificial perception systems neuromorphic computing artificial intelligence
下载PDF
Multimodal artificial intelligence system for detecting a small esophageal high-grade squamous intraepithelial neoplasia: A case report
19
作者 Yang Zhou Rui-De Liu +3 位作者 Hui Gong Xiang-Lei Yuan Bing Hu Zhi-Yin Huang 《World Journal of Gastrointestinal Endoscopy》 2025年第1期61-65,共5页
BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,... BACKGROUND Recent advancements in artificial intelligence(AI)have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases.AI has shown great promise in clinical practice,particularly for diagnostic support,offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.CASE SUMMARY In this study,we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy,highlighting its potential for early detection of malignancies.The lesion was confirmed as high-grade squamous intraepithelial neoplasia,with pathology results supporting the AI system’s accuracy.The multimodal AI system offers an integrated solution that provides real-time,accurate diagnostic information directly within the endoscopic device interface,allowing for single-monitor use without disrupting endoscopist’s workflow.CONCLUSION This work underscores the transformative potential of AI to enhance endoscopic diagnosis by enabling earlier,more accurate interventions. 展开更多
关键词 Artificial intelligence Multimodal artificial intelligence system Esophageal squamous cell carcinoma High-grade intraepithelial neoplasia Case report
下载PDF
Artificial intelligence and the impact of multiomics on the reporting of case reports
20
作者 Aishwarya Boini Vincent Grasso +1 位作者 Heba Taher Andrew A Gumbs 《World Journal of Clinical Cases》 2025年第15期1-6,共6页
The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from ... The integration of artificial intelligence(AI)and multiomics has transformed clinical and life sciences,enabling precision medicine and redefining disease understanding.Scientific publications grew significantly from 2.1 million in 2012 to 3.3 million in 2022,with AI research tripling during this period.Multiomics fields,including genomics and proteomics,also advanced,exemplified by the Human Proteome Project achieving a 90%complete blueprint by 2021.This growth highlights opportunities and challenges in integrating AI and multiomics into clinical reporting.A review of studies and case reports was conducted to evaluate AI and multiomics integration.Key areas analyzed included diagnostic accuracy,predictive modeling,and personalized treatment approaches driven by AI tools.Case examples were studied to assess impacts on clinical decision-making.AI and multiomics enhanced data integration,predictive insights,and treatment personalization.Fields like radiomics,genomics,and proteomics improved diagnostics and guided therapy.For instance,the“AI radiomics,geno-mics,oncopathomics,and surgomics project”combined radiomics and genomics for surgical decision-making,enabling preoperative,intraoperative,and post-operative interventions.AI applications in case reports predicted conditions like postoperative delirium and monitored cancer progression using genomic and imaging data.AI and multiomics enable standardized data analysis,dynamic updates,and predictive modeling in case reports.Traditional reports often lack objectivity,but AI enhances reproducibility and decision-making by processing large datasets.Challenges include data standardization,biases,and ethical concerns.Overcoming these barriers is vital for optimizing AI applications and advancing personalized medicine.AI and multiomics integration is revolutionizing clinical research and practice.Standardizing data reporting and addressing challenges in ethics and data quality will unlock their full potential.Emphasizing collaboration and transparency is essential for leveraging these tools to improve patient care and scientific communication. 展开更多
关键词 Artificial intelligence Multiomics Precision medicine GENOMICS PROTEOMICS Metabolomics Radiomics Pathomics Surgomics Predictive modeling
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部