期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Homology of Powers of Ideals: Artin-Rees Numbers of Syzygies and the Golod Property
1
作者 Jiirgen Herzog Volkmar Welker Siamak Yassemi 《Algebra Colloquium》 SCIE CSCD 2016年第4期689-700,共12页
Let Ro be a Noetherian local ring and R a standard graded R0-algebra with maximal ideal ra and residue class field K = Rim. For a graded ideal I in R we show that for k 〉〉 0: (1) the Artin-Rees number of the syzy... Let Ro be a Noetherian local ring and R a standard graded R0-algebra with maximal ideal ra and residue class field K = Rim. For a graded ideal I in R we show that for k 〉〉 0: (1) the Artin-Rees number of the syzygy modules of Ik as submodules of the free modules from a free resolution is constant, and thereby the Artin-Rees number can be presented as a proper replacement of regularity in the local situation; and (2) R is a polynomial ring over the regular Ro, the ring R/Ik is Golod, its Poincar4-Betti series is rational and the Betti numbers of the free resolution of K over R/I^k are polynomials in k of a specific degree. The first result is an extension of the work by Swanson on the regularity of I^k for k 〉〉 0 from the graded situation to the local situation. The polynomiality consequence of the second result is an analog of the work by Kodiyalam on the behaviour of Betti numbers of the minimal free resolution of R/Ik over R. 展开更多
关键词 artin-rees numbers SYZYGIES Golod rings Betti numbers deviations
原文传递
左连续环中若干链条件的等价性
2
作者 陈淼森 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2001年第2期264-266,共3页
(1)设R是左连续环,则R是在Artin环当且仅当R满足左限制有限条件当且仅当R关于本质左理想满足极小条件当且仅当R关于本质左理想满足极大条件,同时给出一个左自内射环是QF环的充要条件;(2)证明了左 Z1-环上的有... (1)设R是左连续环,则R是在Artin环当且仅当R满足左限制有限条件当且仅当R关于本质左理想满足极小条件当且仅当R关于本质左理想满足极大条件,同时给出一个左自内射环是QF环的充要条件;(2)证明了左 Z1-环上的有限生成模都有 Artin-Rees性质. 展开更多
关键词 左连续环 左自内射环 左Z1-环 本质左理想 artin-rees性质 结合环 有限生成模 EXTENDING模 QF环
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部