Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be u...Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.展开更多
Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and ...Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.展开更多
In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of B...In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.展开更多
By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (...By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (0.633 μm) wavelengths in the same optical path with a tunable double wave He Ne laser designed by ourselves. The measuring principle and the device are describod.展开更多
Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The stru...Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.展开更多
Zinc oxide (ZnO) thin films were deposited on sapphire (0001) substrates at room temperature by radiofrequency (RF) magnetron sputtering at oxygen gas contents of 0%, 25%, 50% and 75%, respectively. The influenc...Zinc oxide (ZnO) thin films were deposited on sapphire (0001) substrates at room temperature by radiofrequency (RF) magnetron sputtering at oxygen gas contents of 0%, 25%, 50% and 75%, respectively. The influence of oxygen gas content on the structural and optical properties of ZnO thin films was studied by a surface profile measuring system, X-ray diffraction analysis, atomic force microscopy, and UV spectro- photometry. It is found that the size of ZnO crystalline grains increases first and then decreases with the increase of oxygen gas content, and the maximum grain size locates at the 25% oxygen gas content. The crystalline quality and average optical transmittance (〉90%) in the visi- ble-light region of the ZnO film prepared at an oxygen gas content of 25% are better than those of ZnO films at the other contents. The obtained results can be attributed to the resputtefing by energetic oxygen anions in the growing process.展开更多
A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and ...A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and magnetic properties. The optical properties of the films can be effectively tuned by adjusting the thickness of the PAA template. The deposition of Co nanowires greatly increases the color saturation of the PAA films. The theoretical results of the changes in structural color according to the Bragg-Snell formula are consistent with the experimental results. PAA@Co films can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting applications.展开更多
ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, ph...ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.展开更多
TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, hi...TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.展开更多
Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are...Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charg...The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charged particles in the Earth radiation belt, the reflectors could be deteriorated. In order to reveal the deterioration mechanism, the change in optical constants of Al film reflector induced by proton radiation with 60 keV was studied in an environment of vacuum with heat sink. Experimental results showed that when the radiation damage primarily occurs in the Al reflecting film, the extinction coefficient k will gradually decrease with increasing radiation fluence, which results in the decrease of the energies of reflective light. Therefore, the proton radiation induced an obvious degradation of spectral reflectance in the wavelength region from 200 to 800nm on the Al film reflector.展开更多
The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quart...The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).展开更多
A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichl...A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.展开更多
We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispe...We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.展开更多
γ-CuI thin films were prepared by a spraying method using acetonitrile as a solvent,CuI and iodine as reagents.The influences of substrate temperature on the structure,topography,and optical properties of CuI films w...γ-CuI thin films were prepared by a spraying method using acetonitrile as a solvent,CuI and iodine as reagents.The influences of substrate temperature on the structure,topography,and optical properties of CuI films were investigated.Scanning electron microscope(SEM) photos revealed that the shape and grain size of CuI grains were related to substrate temperature.X-ray diffraction results showed that substrate temperature affected the crystalline quality of CuI films.When the substrate temperature was 110°C,CuI thin films showed γ-phase zinkblende structure with(111) preferred orientation.The dimension of the globular CuI crystallite was approximately 35 nm,the energy band gap was 2.97 eV,the maximum transmittance was 87.3% in the part of the visible region,and the open circuit voltage was close to 380 mV.This opened a route for a cadmium-free buffer layer for CuInS2 solar cells.展开更多
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characteriz...The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.展开更多
Erbium doped BaTiO 3 optical-waveguide films on Pyrex substrate was elaborated successfully through sol-gel method. BaTiO 3 is well crystallized when the film is annealed at 650 ℃ in air circumstance. The so-prepar...Erbium doped BaTiO 3 optical-waveguide films on Pyrex substrate was elaborated successfully through sol-gel method. BaTiO 3 is well crystallized when the film is annealed at 650 ℃ in air circumstance. The so-prepared films with 13 layers have comparatively lower refractive index than bulk BaTiO 3, and it can support two TM and TE modes. Photoluminescence and up-conversion luminescence spectra proved the successful doping of rare earth ions.展开更多
Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method.The phase structure,microstructure,surface chemical state,and optical absorption properties of the films were characterized by...Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method.The phase structure,microstructure,surface chemical state,and optical absorption properties of the films were characterized by X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,and Uv-vis spectrometer.The results indicate that Au particles with the average diameters of 35-42 nm are approximately spherical and disperse in the NiO matrix.The optical absorption peaks due to the surface plasmon resonance of Au particles shift to the shorter wavelength and intensify with the increase of Au content.The bandwidth narrows when the Au content increases from 8.4wt% to 45.2wt%,but widens by further increasing the Au content from 45.2wt% to 60.5wt%.The band gap Eg increases with the increase of Au contents from 8.4wt% to 45.2wt%,but decreases by further increasing the Au content.展开更多
Tungsten oxide thin films were deposited on glass substrates by the magnetron sputtering of WO3 bulk at room temperature. The deposited films were annealed at different temperatures in air. The structural measurements...Tungsten oxide thin films were deposited on glass substrates by the magnetron sputtering of WO3 bulk at room temperature. The deposited films were annealed at different temperatures in air. The structural measurements indicate that the films annealed below 300℃ were amorphous, while the films annealed at 400 ℃ were mixed crystalline with hexagonal and triclinic phases of WO3. It was observed that the crystallization of the annealed films becomes more and more distinct with an increase in the annealing temperature. At 400 ℃, nanorod-like structures were observed on the film surface when the annealing time was increased from 60 min to 180 min. The presence of W=O stretching, W-O-W stretching, W-O-W bending and various lattice vibration modes were observed in Raman measurements. The optical absorption behaviors of the films in the range of 450-800 nm are very different with changing annealing temperatures from the room temperature to 400 ℃. After annealing at 400 ℃, the film becomes almost transparent. Increasing annealing time at 400 ℃ can lead to a small blue shift of the optical gap of the film.展开更多
基金funded by the Institute for Research and Community Service(LPPM)Universitas Negeri Padang,Indonesia,with a Contract Number:1529/UN35.15/LT/2023.
文摘Cellulose-based film has gained popularity as an alternative to synthetic polymers due to its outstanding properties.Among all types of cellulose materials available,cellulose nanofiber(CNF)has great potential to be utilized in a diverse range of applications,including as a film material.In this study,CNF biocomposite film was prepared by using polyvinyl alcohol(PVA)as a matrix and Uncaria gambir extract as a filler.This study aims to investigate the effect of Uncaria gambir extract on the optical properties and thermal stability of the produced film.The formation of the CNF biocomposite films was confirmed using Fourier Transform Infrared Spectroscopy,their transmittance characteristics were measured using UV-Vis spectroscopy and a transmittance meter,while their reflectance was determined using a reflectance meter.The results revealed that the addition of Uncaria gambir extract to the CNF biocomposite film improved its UV-shielding properties,as indicated by the lower percentage of transmittance in the visible region,10%–70%.In addition,its reflectance increased to 10.6%compared to the CNF film without the addition of Uncaria gambir extract.Furthermore,the thermal stability of the CNF biocomposite film with the addition of Uncaria gambir extract improved to around 400℃–500℃.In conclusion,the results showed that CNF biocomposite film prepared by adding Uncaria gambir extract can be a promising candidate for optical and thermal management materials.
文摘Thin transparent oxide conducting films(TCOFs)of titanium and gallium substituted zinc oxide(TGZO)were fabricated via radio frequency(RF)magnetron sputtering technique.The effects of RF power on electrical,linear and nonlinear optical characteristics were investigated by Hall tester,Ultraviolet(UV)-visible spectrophotometer and optical characterization method.The results indicate that RF power significantly influences the electrical and optical properties of the deposited films.As RF power raises,the resistivity and Urbach energy fall initially and then rise,while the figure of merit,mean visible transmittance and optical bandgap show the reverse variation trend.At RF power of 190 W,the TGZO sample exhibits the highest electro-optical properties,with the maximum figure of merit(1.14×10^(4)Ω^(-1)∙cm^(-1)),mean visible transmittance(86.9%)and optical bandgap(3.50 eV),the minimum resistivity(6.26×10^(-4)Ω∙cm)and Urbach energy(174.23 meV).In addition,the optical constants of the deposited films were determined by the optical spectrum fitting method,and the RF power dependence of nonlinear optical properties was studied.It is observed that all the thin films exhibit normal dispersion characteristics in the visible region,and the nonlinear optical parameters are greatly affected by the RF power in the ultraviolet region.
文摘In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.
文摘By double beam and double wave interferomatric (DDI) method, the optical constants of thin films, i.e. refractive index, extinction coefficient and thickness may be determined in infrared (3.39 μm) and in visible (0.633 μm) wavelengths in the same optical path with a tunable double wave He Ne laser designed by ourselves. The measuring principle and the device are describod.
基金the Program for New Century Excellent Talents in Universities, MOE, China (No. NCET-05-0764)the Tackle Key Problems on Scientific Technology Foundation of Chongqing Municipality (Nos. CSTC2005AA4006-A6 and CSTC2004AC4034)+2 种基金the Natural Science Foundation of Chongqing Municipality (No. CSTC2005BA4016)China Postdoctoral Science Foundation (No. 2005037544)the Inno-base for Graduates of Chongqing University (No. 200506Y1B0240131).
文摘Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.
基金supported by the National Natural Science Foundation of China (Nos. 60876055 and11074063)the Natural Science foundation of Hebei Province,China (Nos. E2008000620 and E2009000207)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20091301110002)the Key Basic Research Program of Hebei Provincial Applied Basic Research Plan (No. 10963525D)
文摘Zinc oxide (ZnO) thin films were deposited on sapphire (0001) substrates at room temperature by radiofrequency (RF) magnetron sputtering at oxygen gas contents of 0%, 25%, 50% and 75%, respectively. The influence of oxygen gas content on the structural and optical properties of ZnO thin films was studied by a surface profile measuring system, X-ray diffraction analysis, atomic force microscopy, and UV spectro- photometry. It is found that the size of ZnO crystalline grains increases first and then decreases with the increase of oxygen gas content, and the maximum grain size locates at the 25% oxygen gas content. The crystalline quality and average optical transmittance (〉90%) in the visi- ble-light region of the ZnO film prepared at an oxygen gas content of 25% are better than those of ZnO films at the other contents. The obtained results can be attributed to the resputtefing by energetic oxygen anions in the growing process.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.A2012205038)
文摘A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Co nanowires (PAA@Co nanocomposite films) is reported in this paper. The films exhibit vivid structural colors and magnetic properties. The optical properties of the films can be effectively tuned by adjusting the thickness of the PAA template. The deposition of Co nanowires greatly increases the color saturation of the PAA films. The theoretical results of the changes in structural color according to the Bragg-Snell formula are consistent with the experimental results. PAA@Co films can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting applications.
基金Supported by the National Nature Science Foundation under Grant No 50871046, the National Basic Research Program of China under Grant No 2010CB631001, and the Program for Changjiang Scholars and Innovative Research Team in University.
文摘ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.
基金This work was supported by the National Natural Science Foundation of China(No,50376067)the Plan for Science&Technology Development of Guangzhou(2001-Z-117-01).
文摘TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074232,10874160,and 21002097)the National Basic Research Program of China(Grant Nos.2011CB932801 and 2012CB933702)
文摘Thin oxidized copper films in various thickness values are deposited onto quartz glass substrates by electron beam evaporation. The ellipsometry parameters and transmittance in a wavelength range of 300 nm-1000 nm are collected by a spectroscopic ellipsometer and a spectrophotometer respectively. The effective thickness and optical constants, i.e., refractive index n and extinction coefficient k, are accurately determined by using newly developed ellipsometry combined with transmittance iteration method. It is found that the effective thickness determined by this method is close to the physical thickness and has obvious difference from the mass thickness for very thin film due to variable density of film. Furthermore, the thickness dependence of optical constants of thin oxidized Cu films is analyzed.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.
文摘The Al film reflectors can yield a high-reflectance over a broad wavelength region, and have been widely used in the spacecraft optical instruments for high quality optical applications. Under the irradiation of charged particles in the Earth radiation belt, the reflectors could be deteriorated. In order to reveal the deterioration mechanism, the change in optical constants of Al film reflector induced by proton radiation with 60 keV was studied in an environment of vacuum with heat sink. Experimental results showed that when the radiation damage primarily occurs in the Al reflecting film, the extinction coefficient k will gradually decrease with increasing radiation fluence, which results in the decrease of the energies of reflective light. Therefore, the proton radiation induced an obvious degradation of spectral reflectance in the wavelength region from 200 to 800nm on the Al film reflector.
基金This work was financially supported by the Natural Science Foundation of Tianjin (No. 33802311)
文摘The effect of different annealing temperatures on the structure, morphology,and optical properties of ZnO thin films prepared by the chelating sol-gel method was investigated.Zinc-oxide thin films were coated on quartz glass substrates by dip coating. Zinc nitrate, absoluteethanol, and citric acid were used as precursor, solvent, and chelating agent, respectively. Theresults show that ZnO films derived from zinc-citrate have lower crystallization temperature (below400℃), and that the crystal structure is wurtzite. The films, treated over 500℃, consist ofnano-particles and show to be porous at 600℃. The particle size of the film increases with theincrease of the annealing temperature. The largest particle size is 60 nm at 600℃. The opticaltransmittances related to the annealing temperatures become 90% higher in the visible range. Thefilm shows a starting absorption at 380 nm, and the optical band-gap of the thin film (fired at500℃) is 3.25 eV and close to the intrinsic band-gap of ZnO (3.2 eV).
基金Funded by the National Natural Science Foundation of China(No.61205062)the Scientific Research Foundation for Doctor of University(No.2019Y02)。
文摘A novel fiber optic sensor based on optical composite oxygen-sensitive film was developed for determination of 2,4-dichlorophenol(DCP).The optical composite oxygen-sensitive film consists of tris(2,2’-bipyridyl)dichloro ruthenium(II)hexahydrate(Ru(bpy)3Cl2)as the fluorescence indicator and iron(III)tetrasulfophthalocyanine(Fe(III)PcTs)as bionic enzyme.A lock-in amplifier was used for detecting the lifetime of the composite oxygen-sensitive film by measuring the phase delay of the sensor head.The different variables affecting the sensor performance were evaluated and optimized.Under the optimal conditions(i e,pH 6.0,25℃,Fe(III)PcTs concentration of 5.0×10^-5 mol/L),the linear detection range,detection limit and response time of the fiber optic sensor are 3.0×10^-7-9.0×10^-5 mol/L,4.8×10^-8 mol/L(S/N=3),and 220 s,respectively.The sensor displays high selectivity,good repeatability and stability,which have good potentials in analyzing DCP concentration in practical water samples.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61177079)the Open Fund of Key Laboratory of Electronics Engineering,College of Heilongjiang Province,China (Grant No. DZZD20100014)the Youth Science Foundation of Heilongjiang University,China (Grant No. QL200914)
文摘We propose to use wavelength modulation approach,i.e.,the spectroscopy of a surface plasmon in the frequency domain,to characterize the optical dispersion property of gold film.Using this method,we determine the dispersion relationship of gold film in a wavelength range from 537.12 nm to 905.52 nm,and our results accord well with the reported results by other authors.This method is particularly suited for studying the optical dispersion properties of thin metal films,because a series of dielectric constants over a wide spectral range can be determined simultaneously via only a single scan of the incident angle,thereby avoiding the repeated measurements required when using the angular modulation approach.
基金supported by Beijing Municipal Natural Science Foundation (No.2091003)
文摘γ-CuI thin films were prepared by a spraying method using acetonitrile as a solvent,CuI and iodine as reagents.The influences of substrate temperature on the structure,topography,and optical properties of CuI films were investigated.Scanning electron microscope(SEM) photos revealed that the shape and grain size of CuI grains were related to substrate temperature.X-ray diffraction results showed that substrate temperature affected the crystalline quality of CuI films.When the substrate temperature was 110°C,CuI thin films showed γ-phase zinkblende structure with(111) preferred orientation.The dimension of the globular CuI crystallite was approximately 35 nm,the energy band gap was 2.97 eV,the maximum transmittance was 87.3% in the part of the visible region,and the open circuit voltage was close to 380 mV.This opened a route for a cadmium-free buffer layer for CuInS2 solar cells.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60877029, 10904109, 60907021 and 60977035, the Natural Science Foundation of Tianjin under Grant Nos 09JCYBJC01400 and 07JCYBJC06400, and Tianjin Key Subject for Materials Physics and Chemistry.
文摘The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.
文摘Erbium doped BaTiO 3 optical-waveguide films on Pyrex substrate was elaborated successfully through sol-gel method. BaTiO 3 is well crystallized when the film is annealed at 650 ℃ in air circumstance. The so-prepared films with 13 layers have comparatively lower refractive index than bulk BaTiO 3, and it can support two TM and TE modes. Photoluminescence and up-conversion luminescence spectra proved the successful doping of rare earth ions.
基金supported by the Major State Basic Research Development Program of China(No.2007CB613301)the National Natural Science Foundation of China(Nos.50842028 and 50972012)
文摘Au nanoparticles dispersed NiO composite films were prepared by a chemical solution method.The phase structure,microstructure,surface chemical state,and optical absorption properties of the films were characterized by X-ray diffraction,transmission electron microscopy,X-ray photoelectron spectroscopy,and Uv-vis spectrometer.The results indicate that Au particles with the average diameters of 35-42 nm are approximately spherical and disperse in the NiO matrix.The optical absorption peaks due to the surface plasmon resonance of Au particles shift to the shorter wavelength and intensify with the increase of Au content.The bandwidth narrows when the Au content increases from 8.4wt% to 45.2wt%,but widens by further increasing the Au content from 45.2wt% to 60.5wt%.The band gap Eg increases with the increase of Au contents from 8.4wt% to 45.2wt%,but decreases by further increasing the Au content.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.11104365 and 11104366)the Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices,China(Grant No.13XKL02002)
文摘Tungsten oxide thin films were deposited on glass substrates by the magnetron sputtering of WO3 bulk at room temperature. The deposited films were annealed at different temperatures in air. The structural measurements indicate that the films annealed below 300℃ were amorphous, while the films annealed at 400 ℃ were mixed crystalline with hexagonal and triclinic phases of WO3. It was observed that the crystallization of the annealed films becomes more and more distinct with an increase in the annealing temperature. At 400 ℃, nanorod-like structures were observed on the film surface when the annealing time was increased from 60 min to 180 min. The presence of W=O stretching, W-O-W stretching, W-O-W bending and various lattice vibration modes were observed in Raman measurements. The optical absorption behaviors of the films in the range of 450-800 nm are very different with changing annealing temperatures from the room temperature to 400 ℃. After annealing at 400 ℃, the film becomes almost transparent. Increasing annealing time at 400 ℃ can lead to a small blue shift of the optical gap of the film.