According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs...According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.展开更多
Based on our previous work, the influence of annealing conditions on impurity species in in-situ arsenic (As)- doped Hg1-xCdxTe (x ≈ 0.3) grown by molecular beam epitaxy has been systematically investigated by mo...Based on our previous work, the influence of annealing conditions on impurity species in in-situ arsenic (As)- doped Hg1-xCdxTe (x ≈ 0.3) grown by molecular beam epitaxy has been systematically investigated by modulated photoluminescence spectra. The results show that (i) the doped-As acting as undesirable shallow/deep levels in asgrown can be optimized under proper annealing conditions and the physical mechanism of the disadvantage of high activation temperature, commonly assumed to be more favourable for As activation, has been discussed as compared with the reports in the As-implanted HgCdTe epilayers (x ≈ 0.39), (ii) the density of VHg has an evident effect on the determination of bandgap (or composition) of epilayers and the excessive introduction of VHg will lead to a short-wavelength shift of epilayers, and (iii) the VHs prefers forming the VHg-ASHg complex when the inactivated-As (AsHg or related) coexists in a certain density, which makes it difficult to annihilate VHg in As-doped epilayers. As a result, the bandedge electronic structures of epilayers under different conditions have been drawn as a brief guideline for preparing extrinsic p-type epilayers or related devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11574261)the Natural Science Foundation of Hebei Province,China(Grant No.A2015203261)。
文摘According to the one-dimensional quantum state distribution, carrier scattering, and fixed range hopping model, the structural stability and electron transport properties of N-, P-, and As-doped SiC nanowires(N-SiCNWs, P-SiCNWs, and As-SiCNWs) are simulated by using the first principles calculations. The results show that the lattice structure of NSiCNWs is the most stable in the lattice structures of the above three kinds of doped SiCNWs. At room temperature,for unpassivated SiCNWs, the doping effect of P and As are better than that of N. After passivation, the conductivities of all doped SiCNWs increase by approximately two orders of magnitude. The N-SiCNW has the lowest conductivity. In addition, the N-, P-, As-doped SiCNWs before and after passivation have the same conductivity–temperature characteristics,that is, above room temperature, the conductivity values of the doped SiCNWs all increase with temperature increasing.These results contribute to the electronic application of nanodevices.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB924901)Shanghai Leading Academic Discipline Project (Grant No. B411)+3 种基金National Natural Science Foundation of China (Grant No. 60906043)Shanghai Municipal Commission of Science and Technology Project (Grant Nos. 09ZR1409200 and 10ZR1409800)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090076120010)the Fundamental Research Funds for the Central Universities (Grant No. 09ECNU)
文摘Based on our previous work, the influence of annealing conditions on impurity species in in-situ arsenic (As)- doped Hg1-xCdxTe (x ≈ 0.3) grown by molecular beam epitaxy has been systematically investigated by modulated photoluminescence spectra. The results show that (i) the doped-As acting as undesirable shallow/deep levels in asgrown can be optimized under proper annealing conditions and the physical mechanism of the disadvantage of high activation temperature, commonly assumed to be more favourable for As activation, has been discussed as compared with the reports in the As-implanted HgCdTe epilayers (x ≈ 0.39), (ii) the density of VHg has an evident effect on the determination of bandgap (or composition) of epilayers and the excessive introduction of VHg will lead to a short-wavelength shift of epilayers, and (iii) the VHs prefers forming the VHg-ASHg complex when the inactivated-As (AsHg or related) coexists in a certain density, which makes it difficult to annihilate VHg in As-doped epilayers. As a result, the bandedge electronic structures of epilayers under different conditions have been drawn as a brief guideline for preparing extrinsic p-type epilayers or related devices.