基于密度泛函理论的第一性原理对Ag_3XO_4(X=P,As,V)电子结构及光催化性质进行了对比研究。与Ag_3XO_4相比,Ag_3VO_4较好的光催化稳定性主要源于其结构中Ag-O间较强的作用力增加了对Ag+的控制,而Ag_3VO_4弱的光催化活性与其导带底中存在...基于密度泛函理论的第一性原理对Ag_3XO_4(X=P,As,V)电子结构及光催化性质进行了对比研究。与Ag_3XO_4相比,Ag_3VO_4较好的光催化稳定性主要源于其结构中Ag-O间较强的作用力增加了对Ag+的控制,而Ag_3VO_4弱的光催化活性与其导带底中存在d轨道成份以及较低的价带边势(2.335 V,vs NHE)有关;对Ag_3AsO_4而言,其优于Ag_3XO_4光催化活性的原因基于三个方面:(1)由高分散Ags-Ags杂化轨道构成的导带底能带;(2)窄的带隙(1.91 e V);(3)宽的可见光响应范围以及高的光吸收系数。此外,Ag_3XO_4(X=P,As,V)均为间接带隙半导体光催化材料,其中,Ag_3VO_4有用于分解水制氢研究的可能;上述计算结果与实验结果吻合。展开更多
文摘基于密度泛函理论的第一性原理对Ag_3XO_4(X=P,As,V)电子结构及光催化性质进行了对比研究。与Ag_3XO_4相比,Ag_3VO_4较好的光催化稳定性主要源于其结构中Ag-O间较强的作用力增加了对Ag+的控制,而Ag_3VO_4弱的光催化活性与其导带底中存在d轨道成份以及较低的价带边势(2.335 V,vs NHE)有关;对Ag_3AsO_4而言,其优于Ag_3XO_4光催化活性的原因基于三个方面:(1)由高分散Ags-Ags杂化轨道构成的导带底能带;(2)窄的带隙(1.91 e V);(3)宽的可见光响应范围以及高的光吸收系数。此外,Ag_3XO_4(X=P,As,V)均为间接带隙半导体光催化材料,其中,Ag_3VO_4有用于分解水制氢研究的可能;上述计算结果与实验结果吻合。