This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated product...This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated products and microstructure of the composite material. Compressive strength was tested to characterize the mechanical property of the composite material. It is found that the compressive strength of the Yellow River sediment-coal slime ash composites increases as the added Ca(OH)_2 content grows. The compressive strength increases fast in the early stage but slowly after 28 days. The strength of the composites can be significantly improved via the addition of small amount of Na OH and gypsum. The products(C-S-H, ettringite and CaCO_3), especially C-S-H, make much contribution to the enhancement of strength. The highest strength of the composites can reach 14.4 MPa after 90 days curing with 5% Ca(OH)_2, 0.2% NaOH and 7.5% gypsum. The improved properties of the composites show great potential of utilizing Yellow River sediment for inexpensive construction materials.展开更多
The main purpose of this paper is to study the feasibility of using wood bottom ash to partially replace natural fine aggregate or crushed gneiss sand in the manufacturing of mortars. The experiment uses wood ash as f...The main purpose of this paper is to study the feasibility of using wood bottom ash to partially replace natural fine aggregate or crushed gneiss sand in the manufacturing of mortars. The experiment uses wood ash as fine aggregates, which passes through 5 mm sieve, in proportions of 5%, 10%, 15%, 20% and 25% by weight to replace partially river sand and crushed gneiss, and the both sand of the same size as the aggregate respectively. Experimental results show that density of mortar and the compressive strength of mortar decrease globally with the increase in wood ash content. At 56 days, and for all replacements with wood ash, compressive strengths values of mortar obtained with the mixture of wood ash and river sand is greater than 20 MPa, which is not the case for mortar made with crushed gneiss and wood ash. Moreover, for 5% of replacement with wood ash, compressive strengths of mortar obtained with the mixture of wood ash and river sand and the mixture of wood ash and crushed gneiss are respectively 37 MPa and 32 MPa at 56 days. These values satisfied the strength requirements. Hence, 5% replacement of crushed gneiss with wood ash is suggested and could be benefit for mortar. In addition, the replacement of sand by wood ash is preferable with river sand which contains fewer fines than crushed gneiss. The compressive strength of mortar with 25% wood ash + river sand could be suitable.展开更多
Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quali...Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quality, for us to optimize the process, we set pollutant concentration and total amount control as constraints and put forward the optimal pollution reduction control strategy by simulating and optimizing water quality monitoring data from the target section. Integrated with scenario analysis, COD and ammonia nitrogen pollution optimization wasstudiedin objective function area from Mountain Maan of Acheng to Fuerjia Bridge along Ashe River. The results showed that COD and NH3-N contribution has been greatly reduced to AsheRiverby 49.6% and 32.7% respectively. Therefore, multi-objective optimization by nonlinear programming for water pollution control can make source sewage optimization fairly and reasonably, and the optimal strategies of pollution emission are presented.展开更多
基金Funded by the National Natural Science Foundation of China(No.51578108)the Ministry of Water Resource of the People’s Republic of China(No.201501003)
文摘This work focuses on the production of a new composite material using Yellow River sediment and coal slime ash via alkali-activating method. XRD, FTIR and SEM/EDS were used to characterize the alkali-activated products and microstructure of the composite material. Compressive strength was tested to characterize the mechanical property of the composite material. It is found that the compressive strength of the Yellow River sediment-coal slime ash composites increases as the added Ca(OH)_2 content grows. The compressive strength increases fast in the early stage but slowly after 28 days. The strength of the composites can be significantly improved via the addition of small amount of Na OH and gypsum. The products(C-S-H, ettringite and CaCO_3), especially C-S-H, make much contribution to the enhancement of strength. The highest strength of the composites can reach 14.4 MPa after 90 days curing with 5% Ca(OH)_2, 0.2% NaOH and 7.5% gypsum. The improved properties of the composites show great potential of utilizing Yellow River sediment for inexpensive construction materials.
文摘The main purpose of this paper is to study the feasibility of using wood bottom ash to partially replace natural fine aggregate or crushed gneiss sand in the manufacturing of mortars. The experiment uses wood ash as fine aggregates, which passes through 5 mm sieve, in proportions of 5%, 10%, 15%, 20% and 25% by weight to replace partially river sand and crushed gneiss, and the both sand of the same size as the aggregate respectively. Experimental results show that density of mortar and the compressive strength of mortar decrease globally with the increase in wood ash content. At 56 days, and for all replacements with wood ash, compressive strengths values of mortar obtained with the mixture of wood ash and river sand is greater than 20 MPa, which is not the case for mortar made with crushed gneiss and wood ash. Moreover, for 5% of replacement with wood ash, compressive strengths of mortar obtained with the mixture of wood ash and river sand and the mixture of wood ash and crushed gneiss are respectively 37 MPa and 32 MPa at 56 days. These values satisfied the strength requirements. Hence, 5% replacement of crushed gneiss with wood ash is suggested and could be benefit for mortar. In addition, the replacement of sand by wood ash is preferable with river sand which contains fewer fines than crushed gneiss. The compressive strength of mortar with 25% wood ash + river sand could be suitable.
文摘Based on one-dimensional water quality model and nonlinear programming, the point source pollution reduction model with multi-objective optimization has been established. To achieve cost effective and best water quality, for us to optimize the process, we set pollutant concentration and total amount control as constraints and put forward the optimal pollution reduction control strategy by simulating and optimizing water quality monitoring data from the target section. Integrated with scenario analysis, COD and ammonia nitrogen pollution optimization wasstudiedin objective function area from Mountain Maan of Acheng to Fuerjia Bridge along Ashe River. The results showed that COD and NH3-N contribution has been greatly reduced to AsheRiverby 49.6% and 32.7% respectively. Therefore, multi-objective optimization by nonlinear programming for water pollution control can make source sewage optimization fairly and reasonably, and the optimal strategies of pollution emission are presented.