The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methy...The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and IncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.展开更多
文摘为探究Ash2l(absent,small,or homeotic 2-like,Ash2l)对小鼠大脑皮质神经祖细胞(neural progenitor cells,NPCs)的增殖能力和细胞周期的影响。本研究利用NPCs标志物PAX6和TBR2,检测NPCs数量和分布的改变情况。结果显示,Ash2l敲除导致NPCs数量显著减少(P<0.05),且分布紊乱。对E16.5小鼠进行在体30 min EdU标记实验,检测NPCs增殖能力,Ash2l敲除导致30 min EdU几乎无法进入NPCs(P<0.001)。结果表示,NPCs增殖能力受到严重的影响。用细胞周期M期标志物pH3,检测大脑皮质中处于M期的NPCs分布情况,同时提取了E16.5小鼠大脑皮质蛋白质,检测细胞周期蛋白A的表达量。Ash2l敲除的NPCs的M期细胞核分布紊乱,G_(2)期标志蛋白质细胞周期蛋白A表达量减少。利用EdU和BrdU双标记法,计算NPCs的S期长度。Ash2l敲除后的NPCs的S期长度缩短(P<0.05)。因此,Ash2l调控NPCs细胞周期进程,进而影响NPCs的增殖能力,敲除小鼠大脑皮质发育异常。本研究强调了表观遗传调控对胚胎期神经系统发育的重要作用,并对表型进行了深入探索。
文摘The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and IncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.