Background:The lateral root is one of the most important organs that constitute the root architecture system in plants.It can directly affect the contact area between plants and soil and plays an important role in pla...Background:The lateral root is one of the most important organs that constitute the root architecture system in plants.It can directly affect the contact area between plants and soil and plays an important role in plant structural support and nutrient absorption.Optimizing root architecture systems can greatly increase crop yields.This study was designed to identify the molecular markers and candidate genes associated with lateral root development in cotton and to evaluate correlations with yield and disease traits.Result:The number of lateral roots for 14-day old seedlings was recorded for 215 Gossypium arboreum accessions.A correlation analysis showed that the number of lateral roots positively correlates with the sympodial branch node and seed index traits,but negatively correlates with lint percentage.A Genome-wide association study(GWAS)identified 18 significant SNPs with 19 candidate genes associated with the lateral root number.Expression analysis identified three genes(FLA 12,WRKY29,and RBOHA)associated with lateral root development.Conclusion:GWAS an alysis identified key SNPs and candidate gen esfor lateral root number,a nd gen es of FLA 12,WRKY29,and RBOHA may play a pivotal role in lateral root development in Asian cotton.展开更多
中亚五国地处亚洲中部,是世界最大的干旱和半干旱区之一,水资源匮乏严重,农业灌溉用水是最主要的水资源利用方式,因此研究未来主要农作物的作物需水量对探究中亚地区农业水资源的发展极其重要。本研究基于CMIP5(Fifth Coupled Model Int...中亚五国地处亚洲中部,是世界最大的干旱和半干旱区之一,水资源匮乏严重,农业灌溉用水是最主要的水资源利用方式,因此研究未来主要农作物的作物需水量对探究中亚地区农业水资源的发展极其重要。本研究基于CMIP5(Fifth Coupled Model Intercomparison Project)的RCP2.6和RCP4.5气候变化情景,利用作物系数法估算2020-2100年中亚五国棉花和冬小麦的作物需水量,生成了RCP2.6和RCP4.5情景下中亚五国棉花和冬小麦逐年需水量数据集。数据的时间跨度为2020-2100年,时间分辨率为1年,空间分辨率为0.5度,数据格式为.tif。展开更多
基金supported by Central Public-interest Scientific Institution Basal Research Fund,Chinese Academy of Agricultural Science(No.1610162021012)funded by DU Xiongming.
文摘Background:The lateral root is one of the most important organs that constitute the root architecture system in plants.It can directly affect the contact area between plants and soil and plays an important role in plant structural support and nutrient absorption.Optimizing root architecture systems can greatly increase crop yields.This study was designed to identify the molecular markers and candidate genes associated with lateral root development in cotton and to evaluate correlations with yield and disease traits.Result:The number of lateral roots for 14-day old seedlings was recorded for 215 Gossypium arboreum accessions.A correlation analysis showed that the number of lateral roots positively correlates with the sympodial branch node and seed index traits,but negatively correlates with lint percentage.A Genome-wide association study(GWAS)identified 18 significant SNPs with 19 candidate genes associated with the lateral root number.Expression analysis identified three genes(FLA 12,WRKY29,and RBOHA)associated with lateral root development.Conclusion:GWAS an alysis identified key SNPs and candidate gen esfor lateral root number,a nd gen es of FLA 12,WRKY29,and RBOHA may play a pivotal role in lateral root development in Asian cotton.
文摘中亚五国地处亚洲中部,是世界最大的干旱和半干旱区之一,水资源匮乏严重,农业灌溉用水是最主要的水资源利用方式,因此研究未来主要农作物的作物需水量对探究中亚地区农业水资源的发展极其重要。本研究基于CMIP5(Fifth Coupled Model Intercomparison Project)的RCP2.6和RCP4.5气候变化情景,利用作物系数法估算2020-2100年中亚五国棉花和冬小麦的作物需水量,生成了RCP2.6和RCP4.5情景下中亚五国棉花和冬小麦逐年需水量数据集。数据的时间跨度为2020-2100年,时间分辨率为1年,空间分辨率为0.5度,数据格式为.tif。