期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Interdecadal variability of summer precipitation in the Three River Source Region: Influences of SST and zonal shifts of the East Asian subtropical westerly jet 被引量:1
1
作者 Yumeng Liu Xianhong Meng +5 位作者 Lin Zhao S-Y.Simon Wang Lixia Zhang Zhaoguo Li Chan Wang Yingying An 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期47-53,共7页
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i... Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ. 展开更多
关键词 Summer precipitation East asian subtropical westerly jet Three River Source Region Atlantic-Eurasian teleconnection
下载PDF
Seasonal Variation of the East Asian Subtropical Westerly Jet and Its Association with the Heating Field over East Asia 被引量:19
2
作者 况雪源 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第6期831-840,共10页
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist i... The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration. 展开更多
关键词 East asian subtropical westerly jet seasonal variation meridional difference of temperature heating fields over East Asia
下载PDF
The Relationship between the East Asian Subtropical Westerly Jet and Summer Precipitation over East Asia as Simulated by the IAP AGCM4.0 被引量:8
3
作者 YAN Zheng-Bin LIN Zhao-Hui ZHANG He 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第6期487-492,共6页
Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been... Based on a 30-year Atmospheric Model Intercomparison Project(AMIP) simulation using IAP AGCM4.0, the relationship between the East Asian subtropical westerly jet(EASWJ) and summer precipitation over East Asia has been investigated, and compared with observation. It was found the meridional displacement of the EASWJ has a closer relationship with the precipitation over East Asia both from model simulation and observation, with an anomalous southward shift of EASWJ being conducive to rainfall over the Yangtze-Huaihe River Valley(YHRV), and an anomalous northward shift resulting in less rainfall over the YHRV. However, the simulated precipitation anomalies were found to be weaker than observed from the composite analysis, and this would be related to the weakly reproduced mid-upper-level convergence in the mid-high latitudes and ascending motion in the lower latitudes. 展开更多
关键词 East asian subtropical westerly jet summer precipitation IAP AGCM4.0 model evaluation
下载PDF
Simulations of the East Asian Subtropical Westerly Jet by LASG/IAP AGCMs 被引量:4
4
作者 郭兰丽 张耀存 +3 位作者 王斌 李立娟 周天军 包庆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第3期447-457,共11页
Performances of two LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Atmospheric General Circulation Models (AGCMs), na... Performances of two LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Atmospheric General Circulation Models (AGCMs), namely GAMIL and SAMIL, in simulating the major characteristics of the East Asian subtropical westerly jet (EASWJ) in the upper troposphere are examined in this paper. The mean vertical and horizontal structures and the correspondence of the EASWJ location to the meridional temperature gradient in the upper troposphere are well simulated by two models. However, both models underestimate the EASWJ intensity in winter and summer, and are unable to simulate the bimodal distribution of the major EASWJ centers in mid-summer, relative to the observation, especially for the SAMIL model. The biases in the simulated EASWJ intensity are found to be associated with the biases of the meridional temperature gradients in the troposphere, and furthermore with the surface sensible heat flux and condensation latent heating. The models capture the major characteristics of the seasonal evolution of the diabatic heating rate averaged between 30°-45°N, and its association with the westerly jet. However, the simulated maximum diabatic heating rate in summer is located westward in comparison with the observed position, with a relatively strong diabatic heating intensity, especially in GAMIL. The biases in simulating the diabatic heating fields lead to the biases in simulating the temperature distribution in the upper troposphere, which may further affect the EASWJ simulations. Therefore, it is necessary to improve the simulation of the meridional temperature gradient as well as the diabatic heating field in the troposphere for the improvement of the EASWJ simulation by GAMIL and SAMIL models. 展开更多
关键词 East asian subtropical westerly jet GAMIL SAMIL Diabatic heating
下载PDF
Simulation of the East Asian Subtropical Westerly Jet Stream with GFDL AGCM (AM2.1) 被引量:6
5
作者 HUANG Gang LIU Yong 《Atmospheric and Oceanic Science Letters》 2011年第1期24-29,共6页
The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet S... The present study validated the capability of the AM2.1,a model developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL),in reproducing the fundamental features of the East Asian Subtropical Westerly Jet Stream (EASWJ).The main behaviors of the EASWJ are also investigated through the reanalysis of observational NCEP/NCAR data.The mean state of the EASWJ,including its intensity,location,structure,and seasonal evolution is generally well-portrayed in the model.Compared with the observation,the model tends to reproduce a weaker jet center.And,during summer,the simulated jet center is northward-situated.Results also demonstrate the model captures the variability of EASWJ during summer well.The results of the empirical orthogonal function (EOF) applied on the zonal wind at 200 hPa (U200) over East Asia for both the observation and simulation indicate an inter-decadal shift around the late 1970s.The correlation coefficient between the corresponding principle components is as great as 0.42 with significance at the 99% confidence level. 展开更多
关键词 East asian subtropical westerly jet Stream seasonal evolution GCM
下载PDF
An Assessment of the Predictability of the East Asian Subtropical Westerly Jet Based on TIGGE Data 被引量:3
6
作者 ZHOU Baiquan NIU Ruoyun ZHAI Panmao 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期401-412,共12页
The predictability of the position,spatial coverage and intensity of the East Asian subtropical westerly jet (EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems (EPSs) from four rep... The predictability of the position,spatial coverage and intensity of the East Asian subtropical westerly jet (EASWJ) in the summers of 2010 to 2012 was examined for ensemble prediction systems (EPSs) from four representative TIGGE centers,including the ECMWF,the NCEP,the CMA,and the JMA.Results showed that each EPS predicted all EASWJ properties well,while the levels of skill of all EPSs declined as the lead time extended.Overall,improvements from the control to the ensemble mean forecasts for predicting the EASWJ were apparent.For the deterministic forecasts of all EPSs,the prediction of the average axis was better than the prediction of the spatial coverage and intensity of the EASWJ.ECMWF performed best,with a lead of approximately 0.5-1 day in predictability over the second-best EPS for all EASWJ properties throughout the forecast range.For probabilistic forecasts,differences in skills among the different EPSs were more evident in the earlier part of the forecast for the EASWJ axis and spatial coverage,while they departed obviously throughout the forecast range for the intensity.ECMWF led JMA by about 0.5-1 day for the EASWJ axis,and by about 1-2 days for the spatial coverage and intensity at almost all lead times.The largest lead of ECMWF over the relatively worse EPSs,such as NCEP and CMA,was approximately 3-4 days for all EASWJ properties.In summary,ECMWF showed the highest level of skill for predicting the EASWJ,followed by JMA. 展开更多
关键词 TIGGE East asian subtropical westerly jet deterministic forecast probabilistic forecast forecast assessment
下载PDF
Different Configurations of Interannual Variability of the Western North Pacific Subtropical High and East Asian Westerly Jet in Summer 被引量:3
7
作者 Xinyu LI Riyu LU Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第6期931-942,共12页
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan... This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity. 展开更多
关键词 western North Pacific subtropical high East asian westerly jet CIRCULATION RAINFALL sea surface temperature
下载PDF
VARIATION OF THE EAST ASIAN SUBTROPICAL WESTERLY JET AND ASSOCIATED QUANTIFIED OBJECTIVE INDEXES 被引量:2
8
作者 金荣花 李维京 +2 位作者 闫彩霞 李艳 张博 《Journal of Tropical Meteorology》 SCIE 2011年第4期345-351,共7页
In order to understand the role of East Asian subtropical westerly jet (EASWJ) in forecasting summer precipitation in East China,interseasonal pentad characteristics of the EASWJ and their relation to summer precipita... In order to understand the role of East Asian subtropical westerly jet (EASWJ) in forecasting summer precipitation in East China,interseasonal pentad characteristics of the EASWJ and their relation to summer precipitation in East China are analyzed with the daily reanalysis data provided by National Centers for Environmental Prediction (NCEP,USA) and daily precipitation data from 714 Chinese meteorological stations during the period 1960-2009.In addition,the daily evolution of the EASWJ and objective quantification of the EASWJ are investigated for the Meiyu season over the middle and lower reaches of the Yangtze River valley.It is found that the EASWJ and summer precipitation bands in East China move simultaneously.Especially,the stationary state and northward shift of the EASWJ are closely associated with the beginning,ending and stabilization of the annually first raining season in South China and Meiyu over these reaches.Analysis on the characteristics of the EASWJ in typical (atypical) Meiyu years over these reaches shows that the EASWJ swings steadily around its climatological position in meridional orientation (with large amplitude).Numerical experiments on an example in 2005 shows that indexes proposed in this study can depict the EASWJ well and should be valuable for application in the operation. 展开更多
关键词 medium-range characteristics statistical analysis East asian subtropical westerly jet
下载PDF
The Relationship Between Abnormal Meiyu and Medium-Term Scale Wave Perturbation Energy Propagation Along the East Asian Subtropical Westerly Jet 被引量:1
9
作者 JIN Rong-hua YANG Ning +2 位作者 SUN Xiao-qing LIU Si-jia YIN Shan 《Journal of Tropical Meteorology》 SCIE 2020年第2期125-136,共12页
The East Asian subtropical westerly jet(EASWJ)is one of the most important factors modulating the Meiyu rainfall in the Yangtze-Huaihe River Basin,China.This article analyzed periods of the medium-term EASWJ variation... The East Asian subtropical westerly jet(EASWJ)is one of the most important factors modulating the Meiyu rainfall in the Yangtze-Huaihe River Basin,China.This article analyzed periods of the medium-term EASWJ variation,wave packet distribution and energy propagation of Rossby waves along the EASWJ during Meiyu season,and investigated their possible influence on abnormal Meiyu rain.The results showed that during the medium-term scale atmospheric dynamic process,the evolution of the EASWJ in Meiyu season was mainly characterized by the changes of3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves.The strong perturbation wave packet and energy propagation of the 3-8 d synoptic-scale and 10-15 d low-frequency Rossby waves are mostly concentrated in the East Asian region of 90°-150°E,where the two wave trains of perturbation wave packets and wave-activity flux divergence coexist in zonal and meridional directions,and converge on the EASWJ.Besides,the wave trains of perturbation wave packet and wave-activity flux divergence in wet Meiyu years are more systematically westward than those in dry Meiyu years,and they are shown in the inverse phases between each other.In wet(dry)Meiyu year,the perturbation wave packet high-value area of the 10-15 d low-frequency variability is located between the Aral Sea and the Lake Balkhash(in the northeastern part of China),while over eastern China the wave-activity flux is convergent and strong(divergent and weak),and the high-level jets are strong and southward(weak and northward).Because of the coupling of high and low level atmosphere and high-level strong(weak)divergence on the south side of the jet over the Yangtze-Huaihe River Basin,the low-level southwest wind and vertically ascending motion are strengthened(weakened),which is(is not)conducive to precipitation increase in the Yangtze-Huaihe River Basin.These findings would help to better understand the impact mechanisms of the EASWJ activities on abnormal Meiyu from the perspective of medium-term scale Rossby wave energy propagation. 展开更多
关键词 East asian subtropical westerly jet(Easwj) medium-term scale Rossby wave wave packet distribution energy propagation abnormal Meiyu
下载PDF
The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer
10
作者 Ying Zhou Jiacan Yuan +4 位作者 Zhiping Wen Sihua Huang Xiaodan Chen Yuanyuan Guo Qiyan Lin 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第5期28-35,共8页
Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon ... Summer weather extremes(e.g.,heavy rainfall,heat waves)in China have been linked to anomalies of summer monsoon circulations.The East Asian subtropical westerly jet(EASWJ),an important component of the summer monsoon circulations,was investigated to elucidate the dynamical linkages between its intraseasonal variations and local weather extremes.Based on EOF analysis,the dominant mode of the EASWJ in early summer is characterized by anomalous westerlies centered over North China and anomalous easterlies centered over the south of Japan.This mode is conducive to the occurrence of precipitation extremes over Central and North China and humid heat extremes over most areas of China except Northwest and Northeast China.The centers of the dominant mode of the EASWJ in late summer extend more to the west and north than in early summer,and induce anomalous weather extremes in the corresponding areas.The dominant mode of the EASWJ in late summer is characterized by anomalous westerlies centered over the south of Lake Baikal and anomalous easterlies centered over Central China,which is favorable for the occurrence of precipitation extremes over northern and southern China and humid heat extremes over most areas of China except parts of southern China and northern Xinjiang Province.The variability of the EASWJ can influence precipitation and humid heat extremes by driving anomalous vertical motion and water vapor transport over the corresponding areas in early and late summer. 展开更多
关键词 East asian subtropical westerly jet Early and late summer Precipitation extremes Humid heat extremes
下载PDF
The Asian Subtropical Westerly Jet Stream in CRA-40, ERA5, and CFSR Reanalysis Data:Comparative Assessment 被引量:13
11
作者 Xiaojing YU Lixia ZHANG +1 位作者 Tianjun ZHOU Jingwei LIU 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期46-63,共18页
The Asian subtropical westerly jet(AWJ) exerts crucial influences on Eurasian continent weather and climate. This paper analyzes the advantages and limitations of CRA-40, which is China's first generation 40-yr(1... The Asian subtropical westerly jet(AWJ) exerts crucial influences on Eurasian continent weather and climate. This paper analyzes the advantages and limitations of CRA-40, which is China's first generation 40-yr(1979–2018) global atmosphere and land reanalysis product, in describing the characteristics of AWJ, compared with the ECMWF Reanalysis version 5(ERA5) and NCEP Climate Forecast System Reanalysis(CFSR). The results show a close agreement across the three reanalyses on the whole.(1) In terms of climatology, overall differences of 200-h Pa zonal wind across the three reanalyses are within ± 0.5 m s^(-1)(i.e., ± 2%). Large differences with maxima of ± 2 m s^(-1)(±5%) appear over the Iranian Plateau and south of the Tibetan Plateau in the mid–upper troposphere in winter.(2) For seasonal cycle, the position and intensity of the AWJ centers in the three reanalyses are highly consistent, with correlation coefficient over 0.98. But there are some discrepancies in the zonal shift of the western AWJ center during the transition season.(3) On the interannual timescale, intensity of all AWJ centers varies consistently among the three reanalyses, while larger differences appear in their meridional displacement, especially in the eastern AWJ center.(4)For long-term variations, the three reanalyses all present a significant northward movement of the westerly jet axis in winter, and a southward displacement over central Asia(40°–80°E) and a northward migration over East Asia(80°–110°E) in summer. Thus, this study has provided confidence that CRA-40 has comparable performance with ERA5 and CFSR in depicting the characteristics of AWJ. 展开更多
关键词 asian subtropical westerly jet stream(AWJ) reanalysis products CRA-40
原文传递
The Response of the East Asian Summer Monsoon to Strong Tropical Volcanic Eruptions 被引量:5
12
作者 CUI Xuedong GAO Yongqi SUN Jianqi 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第6期1245-1255,共11页
A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impa... A 600-year integration performed with the Bergen Climate Model and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data were used to investigate the impact of strong tropical volcanic eruptions on the East Asian summer monsoon (EASM) and EASM rainfall.Both the simulation and NCEP/NCAR reanalysis data show a weakening of the EASM in strong eruption years.The model simulation suggests that North and South China experience droughts and the Yangtze-Huaihe River Valley experiences floods during eruption years.In response to strong tropical volcanic eruptions,the meridional air temperature gradient in the upper troposphere is enhanced,which leads to a southward shift and an increase of the East Asian subtropical westerly jet stream (EASWJ).At the same time,the land-sea thermal contrast between the Asian land mass and Northwest Pacific Ocean is weakened.The southward shift and increase of the EASWJ and reduction of the land-sea thermal contrast all contribute to a weakening of the EASM and EASM rainfall anomaly. 展开更多
关键词 East asian summer monsoon volcanic eruption East asian subtropical westerly jet stream land-sea thermal contrast
下载PDF
Variability Modes of the Winter Upper-Level Wind Field over Asian MidHigh Latitude Region 被引量:3
13
作者 ZHANG Yao-Cun XIAO Chu-Liang 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期295-299,共5页
In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes ... In this study,the NCEP/NCAR reanalysis dataset was used to analyze the variability modes of the winter upper-level wind field over Asian mid-high latitude region.As shown by the results,the dominant variability modes of the winter upper-level wind field over Asian mid-high latitude region are characterized by the out-of-phase variation in the intensity of the subtropical and temperate jets over East Asia and the meridional shift of the subtropical jet axis,on interannual and multiannual scales,respectively.The first leading variability mode can be used as a good measure to represent the integral variation of atmospheric general circulation in Asian mid-latitude region.Composite analyses suggest that the first leading variability mode of the winter upper-level wind field is intimately related to the atmospheric circulation and temperature anomalies in the northern hemispheric mid-latitude region. 展开更多
关键词 East asian subtropical westerly jet temperate jet variability mode
下载PDF
Seasonal Variations of the East Asian Subtropical Westerly Jet and the Thermal Mechanism 被引量:3
14
作者 况雪源 张耀存 刘健 《Acta meteorologica Sinica》 SCIE 2007年第2期192-203,共12页
The seasonal variations of the intensity and location of the East Asian subtropical westerly jet (EAWJ) and the thermal mechanism are analyzed by using NCEP/NCAR monthly reanalysis data from 1961 to 2000. It is foun... The seasonal variations of the intensity and location of the East Asian subtropical westerly jet (EAWJ) and the thermal mechanism are analyzed by using NCEP/NCAR monthly reanalysis data from 1961 to 2000. It is found that the seasonal variation of the EAWJ center not only has significant meridional migration, but also shows the rapid zonal displacements during June-July. Moreover, there exists zonal inconsistency in the northward shift process of the EAWJ axis. Analysis on the thermal mechanism of the EAWJ seasonal variations indicates that the annual cycle of the EAWJ seasonal variation matches very well with the structure of the meridional difference of air temperature, suggesting that the EAWJ seasonal variation is closely related to the inhomogeneous heating due to the solar radiation and the land-sea thermal contrast. Through investigating the relation between the EAWJ and the heat transport, it is revealed that the EAWJ weakens and shifts northward during the warming period from wintertime to summertime, whereas the EAWJ intensifies and shifts southward during the cooling period from summertime to wintertime. The meridional difference of the horizontal heat advection transport is the main factor determining the meridional temperature difference. The meridional shift of the EAWJ follows the location of the maximum meridional gradient of the horizontal heat advection transport. During the period from April to October, the diabatic heating plays the leading role in the zonal displacement of the EAWJ center. The diabatic heating of the Tibetan Plateau to the mid-upper troposphere leads to the rapid zonal displacement of the EAWJ center during June-July. 展开更多
关键词 East asian subtropical westerly jet (EAWJ) seasonal variation thermal mechanism
原文传递
夏季沿亚洲副热带西风急流Rossby波传播及其与我国降水异常的联系 被引量:5
15
作者 杨宁 金荣花 +1 位作者 肖天贵 孙晓晴 《气象》 CSCD 北大核心 2020年第1期1-14,共14页
利用1960-2015年夏季(6-8月)NCEP 2.5°×2.5°全球逐日再分析资料,采用涡度源方程和Eliassen-Palm通量,对夏季沿亚洲副热带西风急流Rossby波活动的波源、能量传播及其与我国降水异常的关系进行了分析和研究。结果表明:夏季... 利用1960-2015年夏季(6-8月)NCEP 2.5°×2.5°全球逐日再分析资料,采用涡度源方程和Eliassen-Palm通量,对夏季沿亚洲副热带西风急流Rossby波活动的波源、能量传播及其与我国降水异常的关系进行了分析和研究。结果表明:夏季200 hPa大气准静止行星波产生的源地主要集中在地中海地区,亚洲副热带西风急流(ASWJ)中的准静止Rossby波在此激发并沿急流向东传播,东传过程中在急流轴南侧波流相互作用相对活跃。波作用通量的辐合辐散中心沿副热带西风急流交替分布,波流相互作用是ASWJ上西风强弱交替变化的动力机制。沿ASWJ交替分布的五个波作用通量辐合辐散关键区散度具有较强的关联性,表现为同一Rossby波列的不同部分,其中波源处Rossby波动能量的传播对其下游ASWJ的强弱影响最大,而急流关键区内纬向风的大小也与波作用通量散度场的强弱和分布密切相关。波源处以及位于我国青藏高原东部至黄土高原上空的波作用通量散度指数WFD-Ⅰ和WFC-Ⅱ与我国南、北方降水相关性较为显著,在WFD-Ⅰ为正异常年时,对应南方关键区降水偏多年份占比为62.5%,在WFD-Ⅰ为负异常年时,对应北方关键区降水偏多年份占比为80%;在WFC-Ⅱ为正异常年时,对应南方关键区降水偏少年份占比为66.7%,在WFC-Ⅱ为负异常年时,对应北方关键区降水偏少年份占比为81.8%。研究夏季波源处WFD-Ⅰ异常年导致我国降水异常的环流成因发现,WFD-Ⅰ为正异常年时,由上游波源地区激发的Rossby波向下游地区的能量频散偏强,位置偏南,波流相互作用导致我国南方上空高空急流加强,高低空辐散辐合配置加强,垂直上升运动增强,易造成我国南方地区降水异常偏多。WFD-Ⅰ为负异常年时,Rossby波能量的经向传播较强而纬向传播较弱,北方降水关键区受波通量辐散控制,高空西风急流加强,高低空辐散辐合配置和垂直上升运动增强,有利于我国北方地区降水的发展。 展开更多
关键词 亚洲副热带西风急流 ROSSBY波 波源 波作用通量 降水异常
下载PDF
Interannual Variation of the Onset of Yunnan’s Rainy Season and Its Relationships with the Arctic Oscillation of the Preceding Winter 被引量:1
16
作者 Yan Chen Shichang Guo +2 位作者 Yu Liu Jianhua Ju Juzhang Ren 《Atmospheric and Climate Sciences》 2017年第2期210-222,共13页
Based on an analysis of the circulation in May associated with the interannual variation of the onset of Yunnan’s rainy season, this study examined the rela-tionship between Arctic Oscillation (AO) and the onset timi... Based on an analysis of the circulation in May associated with the interannual variation of the onset of Yunnan’s rainy season, this study examined the rela-tionship between Arctic Oscillation (AO) and the onset timing of the rainy sea-son by using the NCEP/NCAR reanalysis and observational precipitation data for 1961-2010. The results indicated that, on an interannual time scale, intense Asian summer monsoon and an active EU-pattern wave train circulation in its positive phase, associated with a cold cyclonic cell covering the western part of the East Asian subtropical westerly jet (EASWJ), jointly contributed to the onset of the rainy season in May. Otherwise, the onset might be suppressed. The cold cyclonic cell over East Asia likely led to the southward shift and enhancement of EASWJ as well as its secondary circulation around the jet entrance, which could provide a favorable dynamic and thermal condition for rainfalls in Yunnan as was revealed in previous studies on 10 - 30-day time scale. Further examination showed that the preceding wintertime AO played a significant role in the timing of the onset of the rainy season before the mid-1980s’ by mostly modulating the wave-train-like circulation over East Asia in May. During that time period, when the AO index of the previous winter was positive (negative), Yunnan’s rainy season tended to begin earlier (later) than normal. Correspond-ingly, the precipitation in May was also closely linked to wintertime AO. 展开更多
关键词 ONSET of Yunnan’s RAINY SEASON East asian subtropical westerly jet (Easwj) Arctic Oscillation (AO) INTERANNUAL Variation
下载PDF
Wave Sources, Energy Propagation and Conversion for Anomalous Rossby Wave Activities Along the West Asian Jet Stream
17
作者 杨莲梅 张庆云 《Acta meteorologica Sinica》 SCIE 2009年第4期494-505,共12页
Characteristics of the wave sources, energy propagation and conversion for anomalous Rossby wave activities (RWAs) along the West Asian jet stream (WAJS) in summer are examined based on the NCEP/NCAR (National Ce... Characteristics of the wave sources, energy propagation and conversion for anomalous Rossby wave activities (RWAs) along the West Asian jet stream (WAJS) in summer are examined based on the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data from 1958 to 2003, using the vorticity source equation, the Eliassen-Palm (EP) flux, and the wave energy equation under diabatic heating. The study aims to find the dynamical causes for RWA anomalies along the WAJS and to improve the understanding of mid-high latitude circulation anomalies. The results show that the negative vorticity source and the strong EP flux divergence over the Mediterranean Sea and the North Atlantic Scandinavian Peninsula area act as the wave sources for RWA anomalies along the WAJS. When the intensity and position of the wave sources are anomalous, the excited eastward-propagating RWA along the WAJS also behaves anomalously. In strong (weak) years of RWA, Rossby waves excited by the strong divergence of EP fluxes over the Iceland Scandinavian Peninsula area (east to the Scandinavian Peninsula) propagate eastward and southeastward. The eastward propagating waves become strengthened (weakened) after turning southeastward near the Ural Mountains and then entering the Asian subtropical westerly jet stream (ASWJS) over the Caspian Sea-Aral Sea-Xinjiang. The southeastward propagating waves also strengthen (weaken) after directly entering the ASWJS over the eastern Mediterranean-the Black Sea. Furthermore, the divergence of EP fluxes over the Mediterranean also strengthens (weakens) in the strong (weak) years, so they jointly bring about the strong (weak) RWA along the WAJS. Finally, the perturbation available potential energy (PAPE) along the WAJS (15°- 60°E) produced by diabatic heating, is far greater than the conversion from the kinetic energy of the basic flow into the perturbation kinetic energy and from the available potential energy of the basic flow into PAPE. The RWA along the WAJS looks stronger (weaker) than normal when the PAPEs produced by diabatic heating over the Iranian Plateau and West Asia significantly strengthen (weaken), and therefore they are also the energy sources of RWA anomalies. 展开更多
关键词 asian subtropical westerly jet stream aswjS) quasi-stationary wave propagation energy conversion diabatic heating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部