期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Asian Summer Monsoon Onset in Simulations and CMIP5 Projections Using Four Chinese Climate Models 被引量:9
1
作者 ZOU Liwei ZHOU Tianjun 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期794-806,共13页
The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways (RCP) scenario in which anthropo... The reproducibility and future changes of the onset of the Asian summer monsoon were analyzed based on the simulations and projections under the Representative Concentration Pathways (RCP) scenario in which anthropogenic emissions continue to rise throughout the 21 st century (i.e. RCP8.5) by all realizations from four Chinese models that participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Delayed onset of the monsoon over the Arabian Sea was evident in all simulations for present-day climate, which was associated with a too weak simulation of the low-level Somali jet in May. A consistent advanced onset of the monsoon was found only over the Arabian Sea in the projections, where the advanced onset of the monsoon was accompanied by an increase of rainfall and an anomalous anticyclone over the northern Indian Ocean. In all the models except FGOALS-g2, the enhanced low-level Somali jet transported more water vapor to the Arabian Sea, whereas in FGOALS-g2 the enhanced rainfall was determined more by the increased wind convergence. Furthermore, and again in all models except FGOALS-g2, the equatorial SST warming, with maximum increase over the eastern Pacific, enhanced convection in the central West Pacific and reduced convection over the eastern Indian Ocean and Maritime Continent region, which drove the anomalous anticyclonic circulation over the western Indian Ocean. In contrast, in FGOALS-g2, there was minimal (near-zero) warming of projected SST in the central equatorial Pacific, with decreased convection in the central West Pacific and enhanced convection over the Maritime Continent. The broader-scale differences among the models across the Pacific were related to both the differences in the projected SST pattern and in the present-day simulations. 展开更多
关键词 asian summer monsoon onset climate projection Chinese climate models
下载PDF
Characteristics of the Onset of the Asian Summer Monsoon and the Importance of Asian-Australian "Land Bridge" 被引量:30
2
作者 何金海 温敏 +1 位作者 王黎娟 徐海明 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期951-963,共13页
Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon ... Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed, Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of she latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres), and the subsequent onset of South China Sea summer monsoon are emphasized. 展开更多
关键词 asian summer monsoon onset asian-Australian "land bridge" splitting of subtropical highbelt
下载PDF
Possible mechanism of the effect of convection over Asian-Australian “land bridge” on the East Asian summer monsoon onset 被引量:10
3
作者 HE Jinhai1, WEN Min2, DING Yihui3 & ZHANG Renhe2 1. Jiangsu Key Laboratory of Meteorological Disaster (KLME), Nanjing Institute of Meteorology, Nanjing University of Informa- tion Science and Technology, Nanjing 210044, China 2. State Key Laboratory of Severe Weather (LaSW), Chinese Academy of Meteorological Sciences, Beijing 100081, China 3. National Climate Center, Chinese Meteorological Administration, Beijing 100081, China 《Science China Earth Sciences》 SCIE EI CAS 2006年第11期1223-1232,共10页
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summ... The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea. 展开更多
关键词 asian-Australian 'land bridge' tropical convection Indo-China Peninsula the splitting of BOREAL SUBTROPICAL high belt East asian summer monsoon onset.
原文传递
Atmospheric Circulation Characteristics Associated with the Onset of Asian Summer Monsoon 被引量:6
4
作者 李崇银 潘静 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第6期925-939,共15页
The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset ... The onset of the Asian summer monsoon has been a focus in the monsoon study for many years. In this paper, we study the variability and predictability of the Asian summer monsoon onset and demonstrate that this onset is associated with specific atmospheric circulation characteristics. The outbreak of the Asian summer mol)~soon is found to occur first over the southwestern part of the South China Sea (SCS) and the Malay Peninsula region, and the monsoon onset is closely related to intra-seasonal oscillations in the lower atmosphere. These intra-seasonal oscillations consist of two low-frequency vortex pairs, one located to the east of the Philippines and the other over the tropical eastern Indian Ocean. Prior to the Asian summer monsoon onset, a strong low-frequency westerly emerges over the equatorial Indian Ocean and the low-frequency vortex pair develops symmetrically along the equator. The formation and evolution of these low-frequency vortices are important and serve as a good indicator for the Asian summer monsoon onset. The relationship between the northward jumps of the westerly jet over East Asia and the Asian summer monsoon onset over SCS is investigated. It is shown that the northward jump of the westerly jet occurs twice during the transition from winter to summer and these jumps are closely related to the summer monsoon development. The first northward jump (from 25°-28°N to around 30°N) occurs on 8 May on average, about 7 days ahead of the summer monsoon onset over the SCS. It is found that the reverse of meridional temperature gradient in the upper-middle troposphere (500-200 hPa) and the enhancement and northward movement of the subtropical jet in the Southern Hemispheric subtropics are responsible for the first northward jump of the westerly jet. 展开更多
关键词 the onset of asian summer monsoon intra-seasonal oscillation low-frequency vortex pair westerly jet northward jump
下载PDF
DETERMINATION OF SOUTH CHINA SEA MONSOON ONSET AND EAST ASIAN SUMMER MONSOON INDEX 被引量:3
5
作者 高辉 梁建茵 《Journal of Tropical Meteorology》 SCIE 2006年第1期1-8,共8页
Results of the definition of South China Sea summer monsoon onset date and East Asian summermonsoon index in recent years are summarized in this paper. And more questions to be resolved are introducedlater.
关键词 中国 南海 夏季 季风 东亚地区
下载PDF
THE ANALYSIS OF MECHANISM OF IMPACT OF AEROSOLS ON EAST ASIAN SUMMER MONSOON INDEX AND ONSET
6
作者 沈新勇 黄文彦 陈宏波 《Journal of Tropical Meteorology》 SCIE 2017年第4期357-367,共11页
RegCM4.3, a high-resolution regional climate model, which includes five kinds of aerosols(dust, sea salt,sulfate, black carbon and organic carbon), is employed to simulate the East Asian summer monsoon(EASM) from 1995... RegCM4.3, a high-resolution regional climate model, which includes five kinds of aerosols(dust, sea salt,sulfate, black carbon and organic carbon), is employed to simulate the East Asian summer monsoon(EASM) from 1995 to 2010 and the simulation data are used to study the possible impact of natural and anthropogenic aerosols on EASM.The results show that the regional climate model can well simulate the EASM and the spatial and temporal distribution of aerosols. The EASM index is reduced by about 5% by the natural and anthropogenic aerosols and the monsoon onset time is also delayed by about a pentad except for Southeast China. The aerosols heat the middle atmosphere through absorbing solar radiation and the air column expands in Southeast China and its offshore areas. As a result, the geopotential height decreases and a cyclonic circulation anomaly is generated in the lower atmosphere. Northerly wind located in the west of cyclonic circulation weakens the low-level southerly wind in the EASM region. Negative surface radiative forcing due to aerosols causes downward motion and an indirect meridional circulation is formed with the low-level northerly wind and high-level southerly wind anomaly in the north of 25° N in the monsoon area, which weakens the vertical circulation of EASM. The summer precipitation of the monsoon region is significantly reduced,especially in North and Southwest China where the value of moisture flux divergence increases. 展开更多
关键词 aerosol climate effect regional climate model East asian summer monsoon monsoon index onset time indirect circulation mechanism analysis
下载PDF
Subseasonal features of the Asian summer monsoon in the NCEP climate forecast system 被引量:3
7
作者 Song YANG WEN Min R Wayne HIGGINS 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2008年第3期88-103,共16页
The operational climate forecast system (CFS) of the US National Centers for Environmental Prediction provides climate predictions over the world, and CFS products are becoming an important source of information for... The operational climate forecast system (CFS) of the US National Centers for Environmental Prediction provides climate predictions over the world, and CFS products are becoming an important source of information for regional climate predictions in many Asian countries where monsoon climate dominates. Recent studies have shown that, on monthly-to-seasonal time-scales, the CFS is highly skillful in simulating and predicting the variability of the Asian monsoon. The higher-frequency variability of the Asian summer monsoon in the CFS is analyzed, using output from a version with a spectral triangular truncation of 126 waves in horizontal and 64 sigma layers in vertical, focusing on synoptic, quasi-biweekly, and intraseasonal time-scales. The onset processes of different regional monsoon components were investigated within Asia. Although the CFS generally overestimates variability of monsoon on these time-scales, it successfully captures many major features of the variance patterns, especially for the synoptic timescale. The CFS also captures the timing of summer monsoon onsets over India and the Indo-China Peninsula. However, it encounters difficulties in simulating the onset of the South China Sea monsoon. The success and failure of the CFS in simulating the onset of monsoon precipitation can also be seen from the associated features of simulated atmospheric circulation processes. Overall, the CFS is capable of simulating the synoptic-to-intraseasonal variability of the Asian summer monsoon with skills. As for seasonal-tointerannual time-scales shown previously, the model is expected to possess a potential for skillful predictions of the high-frequency variability of the Asian monsoon. 展开更多
关键词 asian summer monsoon onset EVOLUTION synoptic-to-intraseasonal variability NCEP climate prediction system
下载PDF
Recent Progress in Studies of the Variabilities and Mechanisms of the East Asian Monsoon in a Changing Climate 被引量:16
8
作者 Wen CHEN Lin WANG +4 位作者 Juan FENG Zhiping WEN Tiaojiao MA Xiuqun YANG Chenghai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第9期887-901,共15页
Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community... Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community and is particularly challenging in a changing climate where the global mean temperature has been rising.Recent advances in studies of the variabilities and mechanisms of the EAM are reviewed in this paper,focusing on the interannual to interdecadal time scales.Some new results have been achieved in understanding the behaviors of the EAM,such as the evolution of the East Asian summer monsoon(EASM),including both its onset and withdrawal over the South China Sea,the changes in the northern boundary activity of the EASM,or the transitional climate zone in East Asia,and the cycle of the EASM and the East Asian winter monsoon and their linkages.In addition,understanding of the mechanism of the EAM variability has improved in several aspects,including the impacts of different types of ENSO on the EAM,the impacts from the Indian Ocean and Atlantic Ocean,and the roles of mid-to high-latitude processes.Finally,some scientific issues regarding our understanding of the EAM are proposed for future investigation. 展开更多
关键词 EAST asian summer monsoon EAST asian winter monsoon CHANGING CLIMATE monsoon onset and withdrawal transitional CLIMATE zone different types of ENSO
下载PDF
Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon 被引量:18
9
作者 WU GuoXiong GUAN Yue +3 位作者 WANG TongMei LIU YiMin YAN JingHui MAO JiangYu 《Science China Earth Sciences》 SCIE EI CAS 2011年第1期1-9,共9页
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean... Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heating over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore currents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula increasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST >31°C forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The convergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from the inertial track in an intensified cyclonic curvature, and then turns northward toward the warm pool in the northern BOB. It therefore converges with the easterly flow on the south side of the anticyclone over the northern BOB, forming a cyclonic circulation center east of Sri Lanka. Co-located with the cyclonic circulation is a generation of atmospheric potential energy, due to lower tropospheric heating by the warm ocean. Eventually the BOB monsoon onset vortex (MOV) is generated east of Sri Lanka. As the MOV migrates northward to the warm pool it develops quickly such that the zonal oriented subtropical high is split over the eastern BOB. Thus, the tropical southwesterly on the southern and eastern sides of the MOV merges into the subtropical westerly in the north, leading to active convection over the eastern BOB and western Indochina Peninsula and onset of the Asian summer monsoon. 展开更多
关键词 夏季风爆发 孟加拉湾 亚洲地区 旋涡 海洋表面温度 反气旋环流 热带印度洋 惯性运动
原文传递
The onset and advance of the Asian summer monsoon 被引量:7
10
作者 Lü Junmei ZHANG Qingyun +1 位作者 TAO Shiyan JU Jianhua 《Chinese Science Bulletin》 SCIE EI CAS 2006年第1期80-88,共9页
Based on the daily outgoing longwave radiation (OLR) data from National Oceanic and At- mospheric Administration (NOAA) satellites, the Cli- mate Prediction Center’s merged analysis of pre- cipitation (CMAP) data and... Based on the daily outgoing longwave radiation (OLR) data from National Oceanic and At- mospheric Administration (NOAA) satellites, the Cli- mate Prediction Center’s merged analysis of pre- cipitation (CMAP) data and the National Centers for Environmental Prediction/National Center for At- mospheric Research (NCEP/NCAR) reanalysis dataset, the mean intraseasonal variability of the Asian summer monsoon (ASM) is investigated by using power spectrum analysis, band-pass filter, and diagnostic analyses. The processes of the onset and advance of monsoon over the southern part of Indo- china Peninsula, the east coast of Bay of Bengal, the South China Sea and the Indian subcontinent are explored. It is found that there is an abrupt change in OLR, precipitation and zonal wind during the onset and advance of the ASM. It is also indicated that the southern part of Indochina Peninsula and the adja- cent Andaman Sea is the region where the earliest onset of the ASM occurs in the 2nd pentad of May. 展开更多
关键词 亚洲 季风 夏季 NOAA OLR
原文传递
Comparison of the Structure and Evolution of Intraseasonal Oscillations Before and After Onset of the Asian Summer Monsoon 被引量:3
11
作者 齐艳军 张人禾 +1 位作者 赵平 翟盘茂 《Acta meteorologica Sinica》 SCIE 2013年第5期684-700,共17页
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed... High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection. 展开更多
关键词 tropical Indian Ocean intraseasonal oscillation asian summer monsoon onset
原文传递
Onset of East Asian subtropical summer monsoon and rainy season in China 被引量:16
12
作者 ZHU CongWen ZHOU XiuJi +2 位作者 ZHAO Ping CHEN LongXun HE JinHai 《Science China Earth Sciences》 SCIE EI CAS 2011年第12期1845-1853,共9页
Here we use harmonic analyses to examine seasonal variations of China land rainfall, low-level winds, and atmospheric heating over East Asia during spring to summer and the associated subtropical summer monsoon activi... Here we use harmonic analyses to examine seasonal variations of China land rainfall, low-level winds, and atmospheric heating over East Asia during spring to summer and the associated subtropical summer monsoon activities. Our results indicate that the South China spring rainfall (SCSR) in March is the prophase of East Asian sub-tropical summer monsoon (EASSM), and the onset of EASSM and China summer rainy season starts in early April, characterized by the enhanced rainfall in South China and the seasonal reverse of zonal land-sea thermal contrast in sub-tropical East Asia. The EASSM onset is earlier than that of South China Sea summer monsoon, and it is active in east of 100?E and north of 20?N. Our analyses suggest that the subsequent heating appears over India-China Peninsula in March and South China in April and causes the low-level atmospheric warming and the zonal land-sea thermal contrast seasonal reverse in East Asian subtropics. The atmospheric heating over South China is the main force to drive the southwesterly winds, updrafts and strengthen the summer precipitation in South China. 展开更多
关键词 中国南方 夏季季风 副热带 东亚 发病 雨季 季节性变化 夏季风活动
原文传递
Analysis of Basic Features of the Onset of the Asian Summer Monsoon 被引量:1
13
作者 柳艳菊 丁一汇 《Acta meteorologica Sinica》 SCIE 2007年第3期257-276,共20页
In this paper, a relatively systematic climatological research on the onset of the Asian tropical summer monsoon (ATSM) was carried out. Based on a unified index of the ATSM onset, the advance of the whole ATSM was ... In this paper, a relatively systematic climatological research on the onset of the Asian tropical summer monsoon (ATSM) was carried out. Based on a unified index of the ATSM onset, the advance of the whole ATSM was newly made and then the view that the ATSM firstly breaks out over the tropical eastern Indian Ocean and the middle and southern Indo-China Peninsula was further documented, which was in the 26th pentad (about May 10), then over the South China Sea (SCS) in the 28th pentad. It seems that the ATSM onset over the two regions belongs to the different stages of the same monsoon system. Then, the onset mechanism of ATSM was further investigated by the comprehensive analysis on the land-sea thermodynamic contrast, intraseasonal oscillation, and so on, and the several key factors which influence the ATSM onset were put forward. Based on these results, a possible climatological schematic map that the ATSM firstly breaks out over the tropical eastern Indian Ocean, the Indo-China Peninsula, and the SCS was also presented, namely seasonal evolution of the atmospheric circulation was the background of the monsoon onset; the enhancement and northward advance of the convections, the sensible heating and latent heating over the Indo-China Peninsula and its neighboring areas, the dramatic deepening of the India-Burma trough, and the westerly warm advection over the eastern Tibetan Plateau were the major driving forces of the summer monsoon onset, which made the meridional gradient of the temperature firstly reverse over this region and ascending motion develop. Then the tropical monsoon and precipitation rapidly developed and enhanced. The phase-lock of the 30-60-day and 10-20-day low frequency oscillations originated from different sources was another triggering factor for the summer monsoon onset. It was just the common effect of these factors that induced the ATSM earliest onset over this region. 展开更多
关键词 asian summer monsoon onset CLIMATOLOGY
原文传递
The effects of asymmetric potential vorticity forcing on the instability of South Asia High and Indian summer monsoon onset 被引量:5
14
作者 ZHANG YaNi WU GuoXiong +1 位作者 LIU YiMin GUAN Yue 《Science China Earth Sciences》 SCIE EI CAS 2014年第2期337-350,共14页
Based on the theory of potential vorticity(PV),the unstable development of the South Asia High(SAH)due to diabatic heating and its impacts on the Indian Summer Monsoon(ISM)onset are studied via a case diagnosis of 199... Based on the theory of potential vorticity(PV),the unstable development of the South Asia High(SAH)due to diabatic heating and its impacts on the Indian Summer Monsoon(ISM)onset are studied via a case diagnosis of 1998.The Indian Summer Monsoon onset in 1998 is related to the rapidly strengthening and northward moving of a tropical cyclone originally located in the south of Arabian Sea.It is demonstrated that the rapid enhancement of the cyclone is a consequence of a baroclinic development characterized by the phase-lock of high PV systems in the upper and lower troposphere.Both the intensification of the SAH and the development of the zonal asymmetric PV forcing are forced by the rapidly increasing latent heat released from the heavy rainfall in East Asia and South East Asia after the onsets of the Bay of Bengal(BOB)monsoon and the South China Sea(SCS)monsoon.High PV moves southwards along the intensified northerlies on the eastern side of the SAH and travels westwards on its south side,which can reach its northwest.Such a series of high PV eddies are transported to the west of the SAH continuously,which is the main source of PV anomalies in the upper troposphere over the Arabian Sea from late spring to early summer.A cyclonic curvature on the southwest of the SAH associated with increasing divergence,which forms a strong upper tropospheric pumping,is generated by the anomalous positive PV over the Arabian Sea on 355 K.The cyclone in the lower troposphere moves northwards from low latitudes of the Arabian Sea,and the upper-layer high PV extends downwards and southwards.Baroclinic development thus occurs and the tropical low-pressure system develops into an explosive vortex of the ISM,which leads to the onset of the ISM.In addition,evolution of subtropical anticyclone over the Arabian Peninsula is another important factor contributing to the onset of the ISM.Before the onset,the surface sensible heating on the Arabian Peninsula is very strong.Consequently the subtropical anticyclone which dominated the Arabian Sea in spring retreats westwards to the Arabian Peninsula and intensifies rapidly.The zonal asymmetric PV forcing develops gradually with high PV eddies moving southwards along northerlies on the eastern side of the anticyclone,and a high PV trough is formed in the middle troposphere over the Arabian Sea,which is favorable to the explosive barotropic development of the tropical cyclone into the vortex.Results from this study demonstrate that the ISM onset,which is different from the BOB and the SCS monsoon onset,is a special dynamical as well as thermodynamic process occurring under the condition of fully coupling of the upper,middle,and lower tropospheric circulations. 展开更多
关键词 夏季风爆发 印度夏季风 南亚高压 非对称涡 不稳定性 阿拉伯海 光伏系统 热带气旋
原文传递
ON ABRUPT CHANGES IN THE GENERAL CIRCULATION OVER ASIAN LOW LATITUDES AROUND ESTABLISHING PERIOD OF ASIAN SUMMER MONSOON
15
作者 简茂球 罗会邦 《Acta meteorologica Sinica》 SCIE 2003年第S1期96-105,共10页
In this paper the abrupt changes of the general circulation over the Asian tropical monsoon area during the period of April through June are studied statistically using the 15-year mean NCEP/NCAR reanalysis daily data... In this paper the abrupt changes of the general circulation over the Asian tropical monsoon area during the period of April through June are studied statistically using the 15-year mean NCEP/NCAR reanalysis daily data of 1982-1996.Results show that over the regions of Bay of Bengal and the South China Sea,the abrupt changes in the thickness (averaged temperature) between 500 and 200 hPa levels,the winds at 850 and 200 hPa and the out-going longwave radiation occur in the 4th pentad of May significantly.The quantity of net radiative heating (QRT) at the top of the atmosphere experiences earlier abrupt changes in mid-April and early May.In addition,the circulation abrupt changes occur generally ten days or two weeks later over the Indian monsoon region than over the South China Sea,except for QRT.It usually takes a shorter time period to complete the circulation abrupt changes over the Bay of Bengal and the South China Sea than over Indian monsoon region,with the exception of the high level wind. 展开更多
关键词 asian summer monsoon onset CIRCULATION abrupt change
原文传递
亚洲夏季风爆发的基本气候特征分析 被引量:32
16
作者 柳艳菊 丁一汇 《气象学报》 CAS CSCD 北大核心 2007年第4期511-526,共16页
利用统一的亚洲热带夏季风爆发指标,重新制作了季风爆发日期的推进图,确证了亚洲热带夏季风最早在热带东印度洋与中印半岛中南部爆发的观点,这发生在26候(5月10日前后),28候(5月20日前后)在南海地区相继爆发,这两个地区的爆发是属同一... 利用统一的亚洲热带夏季风爆发指标,重新制作了季风爆发日期的推进图,确证了亚洲热带夏季风最早在热带东印度洋与中印半岛中南部爆发的观点,这发生在26候(5月10日前后),28候(5月20日前后)在南海地区相继爆发,这两个地区的爆发是属同一季风系的不同爆发阶段。以后通过对海陆热力对比、季节内振荡等多方面的分析,对夏季风的爆发机制问题进行了深入的研究,提出了气候学意义下影响亚洲热带夏季风爆发的关键影响因子。在此基础上,给出了夏季风最早在热带东印度洋-中印半岛-南海地区爆发机理的一种概念模式图,即大气环流的季节进程是季风爆发的背景条件;而中印半岛及其邻近地区对流活动和感热与潜热加热的迅速增强与北推、印缅槽的强烈加深,以及高原东部地区的西风暖平流作用是夏季风爆发的主要驱动力,其结果是使经向温度梯度首先在这个地区反向并建立强的上升运动区,使热带季风和降水迅速发展和加强;来自不同源地的低频30—60 d和10—20 d季节内振荡的锁相则是夏季风爆发的一种触发因子,正是这些因子的共同作用导致了亚洲热带夏季风在这个地区的最早爆发。 展开更多
关键词 亚洲夏季风 季风爆发 气候学
下载PDF
亚洲夏季风爆发前后西北太平洋和孟加拉湾热带气旋活动统计特征 被引量:8
17
作者 任素玲 刘屹岷 吴国雄 《气象学报》 CAS CSCD 北大核心 2016年第6期837-849,共13页
亚洲夏季风爆发始于孟加拉湾,然后向中国南海和印度次大陆扩展,其过程约持续1个月。各地区夏季风爆发时间呈明显的年际变化。利用热带气旋资料和气象再分析资料,统计了1951—2010年孟加拉湾和中国南海夏季风爆发前后西北太平洋热带气旋... 亚洲夏季风爆发始于孟加拉湾,然后向中国南海和印度次大陆扩展,其过程约持续1个月。各地区夏季风爆发时间呈明显的年际变化。利用热带气旋资料和气象再分析资料,统计了1951—2010年孟加拉湾和中国南海夏季风爆发前后西北太平洋热带气旋、孟加拉湾气旋风暴活动和夏季风爆发的关系。结果表明,在孟加拉湾夏季风爆发过程中,共有36a出现孟加拉湾气旋风暴,并且夏季风爆发偏早年出现风暴的几率最高,为80%。在孟加拉湾夏季风爆发偏早、正常和偏晚3种类型中,孟加拉湾风暴活动频率高峰期多出现在夏季风爆发前后几天内。并且在孟加拉湾风暴活动频率高峰出现前期,西北太平洋热带气旋最先出现活动频率高峰。孟加拉湾夏季风爆发前有40%—50%的年份西北太平洋出现热带气旋活动,其中,夏季风爆发偏早年,爆发前西北太平洋热带气旋活跃的时间偏早(4月第2候),且多活动在中国南海和菲律宾附近;爆发正常年,西北太平洋热带气旋活跃的时间为4月第4候,多活动在略偏东的海域;爆发偏晚年,西北太平洋热带气旋活跃的时间为5月初,活动区域最偏东。中国南海夏季风爆发过程中,60a中共有29a西北太平出现热带气旋,其中爆发偏早和正常年出现热带气旋的频率较高,并且热带气旋多出现在爆发当日和爆发后一段时间。整体来看,亚洲夏季风爆发前,西北太平洋热带气旋活动频率最先开始增强,然后孟加拉湾风暴开始活跃并伴随着孟加拉湾夏季风爆发,夏季风爆发偏早和正常年,孟加拉湾夏季风爆发后,西北太平洋热带气旋再次增强,中国南海夏季风爆发。 展开更多
关键词 亚洲夏季风爆发 西北太平洋热带气旋 孟加拉湾风暴 统计特征
下载PDF
东亚夏季风建立前青藏高原地气温差变化特征 被引量:19
18
作者 王澄海 崔洋 《气候与环境研究》 CSCD 北大核心 2011年第5期586-596,共11页
利用青藏高原地区112个站1980~2001年和部分站点1960~2000年的气温、地温资料,采用经验正交EOF和旋转经验正交REOF等方法,对东亚夏季风爆发前青藏高原地气温差的变化特征进行分析,并对其与东亚夏季风之间的联系进行了分析。结果表明,青... 利用青藏高原地区112个站1980~2001年和部分站点1960~2000年的气温、地温资料,采用经验正交EOF和旋转经验正交REOF等方法,对东亚夏季风爆发前青藏高原地气温差的变化特征进行分析,并对其与东亚夏季风之间的联系进行了分析。结果表明,青藏高原地气温差一般超前气温、地温1个月达到全年最大值,比中国中东部同纬度地区的地气温差达到最大值超前2个月。随着高原由春季向夏季的过渡(3~6月),高原地气温差年际变化的异常敏感区逐渐由3月中部的河谷地带移动到高原的东南部地区。高原地表积雪的融雪过程和冻土的融冻过程对东亚夏季风建立前期高原4、5月份地气温差具有重要影响。高原地区的地气温差在4、5份的呈现出不同的变化趋势。4月份,由于积雪的反照率引起的辐射冷却作用,地气温差在1960年代到1970年代中期呈显著减小趋,之后呈增大的趋势。1960年代到1990年代5月的地气温差更多地反映出非绝热加热的作用,高原地气温差呈减小趋势。 展开更多
关键词 青藏高原 地气温差 季风前期 年际变化
下载PDF
南海夏季风建立日期的确定和东亚夏季风强度指数的选取 被引量:23
19
作者 高辉 梁建茵 《热带气象学报》 CSCD 北大核心 2005年第5期525-532,共8页
对近几年来南海夏季风建立日期的确定和东亚夏季风强度指数的选取方面的研究成果进行比较全面的概述,并提出了有待进一步解决的问题。
关键词 南海夏季风 建立日期 东亚夏季风强度指数 夏季风强度指数 东亚 研究成果
下载PDF
亚洲夏季风动力学研究综述 被引量:11
20
作者 刘伯奇 何金海 《热带气象学报》 CSCD 北大核心 2015年第6期869-880,共12页
亚洲夏季风按照气候带可以分为东亚副热带夏季风和亚洲热带夏季风。就气候平均而言,东亚副热带夏季风于4月初在我国江南(泛称"华南")地区建立,而亚洲热带夏季风首先于5月初在孟加拉湾东北部建立,之后向东推进,于5月第4候到达南海,... 亚洲夏季风按照气候带可以分为东亚副热带夏季风和亚洲热带夏季风。就气候平均而言,东亚副热带夏季风于4月初在我国江南(泛称"华南")地区建立,而亚洲热带夏季风首先于5月初在孟加拉湾东北部建立,之后向东推进,于5月第4候到达南海,然而夏季风无法直接西传至印度地区,因此印度夏季风的爆发表现为热带对流在阿拉伯海上空自赤道向北逐步推进的特征。东亚副热带夏季风与亚洲热带夏季风的爆发机制和时空变率都存在明显差异。亚洲夏季风的建立与青藏高原的动力和热力强迫作用联系紧密,其中东亚副热带夏季风的建立又与东亚大陆-西北太平洋的纬向海陆热力差异的季节转换紧密联系,而亚洲热带夏季风的爆发则与亚洲南部地区对流层中上部经向温度梯度的季节变化有关。同时,亚洲热带夏季风的建立过程还与亚洲南部高、低空环流的垂直耦合密切相关。就季节内变化而言,东亚副热带夏季风在4月份表现出10~20天季节内振荡,这与青藏高原表面感热的季节内变化有关,而盛夏的东亚副热带夏季风则存在准双周和21~30天两种振荡信号。亚洲热带夏季风的季节内振荡包含30~60天的北传信号和10~20天的西传信号,其中北传信号与环境气流的垂直切变、边界层辐合以及暖SST下垫面有关。亚洲夏季风年际变率的主要外强迫是ENSO事件,同时印度洋和大西洋海温异常、南极海冰以及青藏高原的冬、春季积雪和感热异常也影响着亚洲夏季风的年际变率。而亚洲夏季风的年代际变化既与气候系统的自然变率有关,又受热带海温强迫、人为排放气溶胶浓度和青藏高原表面热状况长期变化影响。 展开更多
关键词 季风动力学 亚洲夏季风爆发 季节内变率 年际变率 年代际变率
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部