Chronic hepatitis B (CHB) disproportionately affects minority groups in the US, particularly Asian Americans, with numerous factors contributing to this disparity. Of the 2.4 million people living with chronic HBV in ...Chronic hepatitis B (CHB) disproportionately affects minority groups in the US, particularly Asian Americans, with numerous factors contributing to this disparity. Of the 2.4 million people living with chronic HBV in the US, 60% are Asian American. Many are unaware of their status and lack access to proper clinical care, with less than ten percent receiving necessary antiviral treatment. Barriers to screening and care include lack of disease awareness, language and cultural barriers, and financial constraints. Additionally, healthcare providers and systems in the US often overlook the importance of CHB, leading to inadequate care. In response, the Center for Viral Hepatitis (CVH) has implemented a community-based outreach program over the past sixteen years, employing a multifaceted approach involving all sectors of society and various organizations to combat health disparities in CHB. This grassroots campaign has proven highly effective, leveraging CVH’s leadership in spearheading numerous collaborative activities with community members, healthcare professionals, and policymakers. We have summarized the key points of CVH's efforts and their significance in combating CHB-related health disparities. The CHB Screening and Awareness Campaign, tailored to the Asian American community, serves as a successful model for increasing CHB screening, linkage-to-care, and addressing socio-cultural barriers and health literacy. Insights from these outreach programs have guided the development of culturally relevant resources and education initiatives. These findings suggest that such community-driven approaches are essential for addressing health disparities. The strategies and outcomes of CVH’s efforts can inform future health initiatives for other minority communities in the US and globally.展开更多
About the conference The International Conference on Asian and Pacific Coasts(APAC)is an international conference to promote academic and technical exchange on coastal related studies that include coastal and ocean en...About the conference The International Conference on Asian and Pacific Coasts(APAC)is an international conference to promote academic and technical exchange on coastal related studies that include coastal and ocean engineering and marine envi-ronmental problems,among the Asian and Pacific countries/regions.APAC is jointly supported by the Chinese Ocean Engineering Society(COES),the Coastal Engineering Com-mittee of the Japan Society of Civil Engineers(JSCE),and the Korean Society of Coastal and Ocean Engineers(KSCOE).A wide range of organizations from Asian and Pacific countries/regions are its active participants or spon-sors.展开更多
Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has t...Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surface temperature and land surface. This study investigates the relationship between the Asian monsoon and the climate anomalies in the Asian-Pacific-American (APA) sector. A hypothesis is tested that the variability of the upper-tropospheric South Asian high (SAH), which is closely associated with the overall heating of the large-scale Asian monsoon, is linked to changes in the subtropical western Pacific high (SWPH), the midPacific trough, and the Mexican high. The changes in these circulation systems cause variability in surface temperature and precipitation in the APA region. A stronger SAH is accompanied by a stronger and more extensive SWPH. The enlargement of the SWPH weakens the mid-Pacific trough. As a result, the southern portion of the Mexican high becomes stronger. These changes are associated with changes in atmospheric teleconnections, precipitation, and surface temperature throughout the APA region. When the SAH is stronger, precipitation increases in southern Asia, decreases over the Pacific Ocean, and increases over the Central America. Precipitation also increases over Australia and central Africa and decreases in the Mediterranean region. While the signals in surface temperature are weak over the tropical land portion, they are apparent in the mid latitudes and over the eastern Pacific Ocean.展开更多
This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transi...This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.展开更多
Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP...Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970’s, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.展开更多
Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical P...Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer.The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years,while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer.The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer).The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere,which is proposed as a possible reason for southward displacement of the EAJS in June.The late spring-summer warm SST anomaly in the tropical eastern Pacific,however,may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.展开更多
This study concerns atmospheric responses to the North Pacific subtropical front (NPSTF) in boreal spring over the period 1982-2014. Statistical results show that a strong NPSTF in spring can significantly enhance t...This study concerns atmospheric responses to the North Pacific subtropical front (NPSTF) in boreal spring over the period 1982-2014. Statistical results show that a strong NPSTF in spring can significantly enhance the East Asian jet stream (EAJS). Both transient eddy activity and the atmospheric heat source play important roles in this process. The enhanced atmospheric temperature gradient due to a strong NPSTF increases atmospheric baroclinicity, resulting in an intensification of transient eddy and convection activities. On the one hand, the enhanced transient eddy activities can excite an anomalous cyclonic circulation with a quasi-baraotropical structure in the troposphere to the north of the NPSTF. Accordingly, the related westerly wind anomalies around 30°N can intensify the component of the EAJS over the Northeast Pacific. On the other hand, an enhanced atmospheric heat source over the NPSTF, which is related to increased rainfall, acts to excite an anomalous cyclonic circulation system in the troposphere to the northwest of the NPSTF, which can explain the enhanced component of the EAJS over the Northwest Pacific. The two mechanisms may combine to enhance the EAJS.展开更多
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan...This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity.展开更多
After tobacco use, chronic hepatitis B(CHB) viral infections are the most important cause of cancer globally in that 1 out of 3 individuals have been infected with the hepatitis B virus(HBV). Though infection rates ar...After tobacco use, chronic hepatitis B(CHB) viral infections are the most important cause of cancer globally in that 1 out of 3 individuals have been infected with the hepatitis B virus(HBV). Though infection rates are low(< 1%) in the United States, Asian Americans who comprise about 6% of the population experience about 60% of the CHB burden. This paper reviews the magnitude of hepatitis B(HBV) burden among Asian Americans and the progress being made to mitigate this burden, primarily through localized, communitybased efforts to increase screening and vaccination among Asian American children, adolescents, and adults. This review brings to light that despite the numerous community-based screening efforts, a vast majority of Asian Americans have not been screened and that vaccination efforts, particularly for adults, are sub-optimal. Greater efforts to integrate screenings by providers within existing healthcare systems are urged. Evidence-based strategies are offered to implement CDC's three major recommendations to control and prevent hepatitis B through targeted screening and enhanced vaccination efforts.展开更多
The linkage between the Asian-Pacific oscillation (APO) and the precipitation over central eastern China in spring is preliminarily addressed by use of the observed data. Results show that they correlate very well, ...The linkage between the Asian-Pacific oscillation (APO) and the precipitation over central eastern China in spring is preliminarily addressed by use of the observed data. Results show that they correlate very well, with the positive (negative) phase of APO tending to increase (decrease) the precipitation over central eastern China. Such a relationship can be explained by the atmospheric circulation changes over Asia and the North Pacific in association with the anomalous APO. A positive phase of APO, characterized by a positive anomaly over Asia and a negative anomaly over the North Pacific in the upper-tropospheric temperature, corresponds to decreased low-level geopotential height (H) and increased high-level H over Asia, and these effects are concurrent with increased low-level H and decreased high-level H over the North Pacific. Meanwhile, an anticyclonic circulation anomaly in the upper troposphere and a cyclonic circulation anomaly in the lower troposphere are introduced in East Asia, and the low-level southerly wind is strengthened over central eastern China. These changes provide advantageous conditions for enhanced precipitation over central eastern China. The situation is reversed in the negative phase of APO, leading to reduced precipitation in this region.展开更多
Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI...Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature (SAT) variations north of 40°N in the EAWM region. Second, the well-known western Pacific teleconnection index (WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode (NTM) and the southern temperature mode (STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI-NTM and WPI-STM relationships are robust when the correlation analysis is repeated by (1) the 31-year running correlation and (2) the 8-year high-pass and low-pass filter. Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. Int particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.展开更多
Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western P...Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in the northwestern Pacific and their evolution. The results show that the extreme winter circulation anomaly in the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of the Northern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeastern Pacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east direction is also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic) circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asian summer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is the evolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anomalies originating from the tropical western Pacific gradually move towards, and finally occupy the Asian continent, and further influence the thermal depression over the Asian continent in the following summer.展开更多
A GCM study is performed of the effects on Asian summer monsoon initiation of the Qinghai-Xizang Plateauand western Pacific warm pool. results show that the Plateau, being a prominent sensible heat source, acts as a b...A GCM study is performed of the effects on Asian summer monsoon initiation of the Qinghai-Xizang Plateauand western Pacific warm pool. results show that the Plateau, being a prominent sensible heat source, acts as a basicfactor for the formation of the monsoon circulation, the northward transported low-latitude and low-level warm,moist flow in relation to the sensible heating experiences dynamic lifting on the south and east sides of the highland,releasing vast quantities of latent heat through condensation, whereby the monsoon circulation pattern is furthermodulated; the temperature contrast between the Pacific warm pool and the Australian / marine continents serves asanother basic factor for the northern SW summer monsoon genesis over the South-China Sea-the western Pacific,which, however, falls into a category of winter monsoon on a physical basis.展开更多
This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern floo...This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern flood and Northern drought(SFND)"summer rainfall pattern over East China.The mechanism behind this contribution is also discussed.展开更多
Based on the 1961-2010 NCEP/NCAR reanalysis, this work uses empirical orthogonal function(EOF) and composite analysis to study the distributions of zonal land-sea thermal contrast between Asia and the Pacific during t...Based on the 1961-2010 NCEP/NCAR reanalysis, this work uses empirical orthogonal function(EOF) and composite analysis to study the distributions of zonal land-sea thermal contrast between Asia and the Pacific during transitions from the summer monsoon to the winter monsoon in East Asian subtropics, and investigates the interannual variations of the thermal contrast and their relationships with circulation systems over the East Asian subtropics. The findings are as follows. 1) In autumn, the interannual variations of the temperature deviation in the middle and upper troposphere show significant east-west out-of-phase teleconnection over Asia and the central and eastern Pacific, i.e. the Asian-Pacific Oscillation, or APO. 2) While not as significant as in summer with regard to coverage and intensity, the APO shows interannual variations in autumn that well depicts the change in the intensity of the subtropical monsoon. In the high(low) APO year, the current subtropical summer monsoon is strong(weak) and the winter monsoon is weak(strong) in East Asia as derived from the general circulation and wind field of the East Asian-Pacific region.展开更多
The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Clim...The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models (BCC_CSMs) with different horizontal resolutions, i.e., BCC_CSM1.1 and BCC_CSM1.1 (m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated. The results show that BCC_CSMI.I(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC_CSMI.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC_CSM1.1 (m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC_CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC_CSM 1.1 (m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC_CSM1.1.展开更多
The dust storms from the continent usually affect the abundance and diversity of planktons by supplying trace elements. As such, the response of heterotrophic planktonic bacteria to dusts, nutrients(i.e., nitrogen and...The dust storms from the continent usually affect the abundance and diversity of planktons by supplying trace elements. As such, the response of heterotrophic planktonic bacteria to dusts, nutrients(i.e., nitrogen and phosphorus) or ferrous dosages was investigated in the Kuroshio Extension region of the Northwest Pacific Ocean(NWPO) through on-board incubation experiments during an oceanographic survey in spring 2014. The flow cytometry and 16S rRNA high-throughput sequencing methods were applied to explore the abundance and community structure of bacteria, and the percentage of high nucleic acid bacteria(HNA%). The results showed that the heterotrophic bacteria abundance was low(average 2.55×10^5 cells mL^-1) and subjected to both nitrogen(N) and ferrous(Fe) limitation. Sand-dust deposition observably promoted the activity of heterotrophic planktonic bacteria. The maximum abundance of heterotrophic bacteria was 6.98×10^5 cells mL^-1 in the dust-dosage group, which was 44% higher than the control(P < 0.05). The HNA% in the dust-dosage group was 1.37 times higher than the control(P < 0.05). The activation mechanism was mainly related to the dissolution of N and Fe in the dusts. The relative abundance of genus Winogradskyella was significantly increased by dust deposition while the relative abundance of the genera Tenacibaculum and Hyphomonas was decreased. These variations of bacterial community structure were ascribed to the dissolution of nutrients N and P. Comparing the results of different experimental groups, this study concluded that dust storm improved the abundance of heterotrophic bacteria by dissolution of N and Fe.展开更多
Based on the wavelet packet decomposition/reconstruction method and the NCEP/NCAR daily reanalysis data set, the relation between the south Asian summer monsoon and the west Pacific subtropical high seasonal variation...Based on the wavelet packet decomposition/reconstruction method and the NCEP/NCAR daily reanalysis data set, the relation between the south Asian summer monsoon and the west Pacific subtropical high seasonal variation was discussed, and a corresponding summer monsoon frequency-band energy criterion was defined and introduced for diagnosing the west Pacific subtropical high. Besides, some existing characteristics and rules about the west Pacific subtropical high were further argued and proofed, a few new phenomena and correlation between the south Asian summer monsoon and the west Pacific subtropical high were also revealed and presented.展开更多
The three-dimensional structure of precipitation on a seasonal scale in the Asian-Pacific's three monsoon regions is investigated based on the tropical rainfall measurement mission (TRMM) data. The results show tha...The three-dimensional structure of precipitation on a seasonal scale in the Asian-Pacific's three monsoon regions is investigated based on the tropical rainfall measurement mission (TRMM) data. The results show that: (1) The maximum seasonal variation of the relative proportional difference of convective precipitation and stratiform rain occurs in the East Asian monsoon region, the second occurs in the Indian monsoon region, and the minimum is in the northwest Pacific monsoon region. In both the northwest Pacific mon soon region and the Indian monsoon region, the convective rain is proportionately larger than stratiform rain in all four seasons. (2) Cloud ice reaches its maximum at around 9 km. Cloud water's maximum range is between 3 and 4 km. The large value area of precipitation ice is mainly between 4 and 9 km. The precipi tation water particle is concentrated mostly below 4 km. The largest content is from the ground to 2 km. (3) The most remarkable variance of the content of cloud ice in the Indian monsoon region occurs from spring to winter, and the content of cloud water in the northwest Pacific is always higher than that in the other two regions. (4) The latent heat profile has a similar double-peak structure. The first peak is at 4 km and the second peak is at 2 km. In autumn and winter, the latent heat is higher in the northwest Pacific than in other two regions. In all three regions, the release of the latent heat is higher in summer and autumn than in spring and winter.展开更多
文摘Chronic hepatitis B (CHB) disproportionately affects minority groups in the US, particularly Asian Americans, with numerous factors contributing to this disparity. Of the 2.4 million people living with chronic HBV in the US, 60% are Asian American. Many are unaware of their status and lack access to proper clinical care, with less than ten percent receiving necessary antiviral treatment. Barriers to screening and care include lack of disease awareness, language and cultural barriers, and financial constraints. Additionally, healthcare providers and systems in the US often overlook the importance of CHB, leading to inadequate care. In response, the Center for Viral Hepatitis (CVH) has implemented a community-based outreach program over the past sixteen years, employing a multifaceted approach involving all sectors of society and various organizations to combat health disparities in CHB. This grassroots campaign has proven highly effective, leveraging CVH’s leadership in spearheading numerous collaborative activities with community members, healthcare professionals, and policymakers. We have summarized the key points of CVH's efforts and their significance in combating CHB-related health disparities. The CHB Screening and Awareness Campaign, tailored to the Asian American community, serves as a successful model for increasing CHB screening, linkage-to-care, and addressing socio-cultural barriers and health literacy. Insights from these outreach programs have guided the development of culturally relevant resources and education initiatives. These findings suggest that such community-driven approaches are essential for addressing health disparities. The strategies and outcomes of CVH’s efforts can inform future health initiatives for other minority communities in the US and globally.
文摘About the conference The International Conference on Asian and Pacific Coasts(APAC)is an international conference to promote academic and technical exchange on coastal related studies that include coastal and ocean engineering and marine envi-ronmental problems,among the Asian and Pacific countries/regions.APAC is jointly supported by the Chinese Ocean Engineering Society(COES),the Coastal Engineering Com-mittee of the Japan Society of Civil Engineers(JSCE),and the Korean Society of Coastal and Ocean Engineers(KSCOE).A wide range of organizations from Asian and Pacific countries/regions are its active participants or spon-sors.
文摘Growing evidence indicates that the Asian monsoon plays an important role in affecting the weather and climate outside of Asia. However, this active role of the monsoon has not been demonstrated as thoroughly as has the variability of the monsoon caused by various impacting factors such as sea surface temperature and land surface. This study investigates the relationship between the Asian monsoon and the climate anomalies in the Asian-Pacific-American (APA) sector. A hypothesis is tested that the variability of the upper-tropospheric South Asian high (SAH), which is closely associated with the overall heating of the large-scale Asian monsoon, is linked to changes in the subtropical western Pacific high (SWPH), the midPacific trough, and the Mexican high. The changes in these circulation systems cause variability in surface temperature and precipitation in the APA region. A stronger SAH is accompanied by a stronger and more extensive SWPH. The enlargement of the SWPH weakens the mid-Pacific trough. As a result, the southern portion of the Mexican high becomes stronger. These changes are associated with changes in atmospheric teleconnections, precipitation, and surface temperature throughout the APA region. When the SAH is stronger, precipitation increases in southern Asia, decreases over the Pacific Ocean, and increases over the Central America. Precipitation also increases over Australia and central Africa and decreases in the Mediterranean region. While the signals in surface temperature are weak over the tropical land portion, they are apparent in the mid latitudes and over the eastern Pacific Ocean.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110201)the National Natural Science Foundation of China(Grant No.41475052)
文摘This paper focuses on the relationship between the phase transition of the Pacific decadal oscillation (PDO) and decadal variation of the East Asian summer monsoon (EASM) in the twentieth century. The first transition occurred in the 1940s, with an enhanced SST in the North Pacific and reduced SST in the tropical eastern Pacific and South Indian Ocean. In agreement with these SST changes, a higher SLP was found in most parts of the Pacific, while a lower SLP was found in the North Pacific and most parts of the Indian Ocean. In this case, the EASM was largely enhanced with a southerly anomaly in the lower troposphere along the east coast of China. Correspondingly, there was less rainfall in the Yangtze River valley and more rainfall in northern and southern China. An opposite change was found when the PDO reversed its phase in the late 1970s. In the tropical Indian Ocean and western Pacific, however, the SST was enhanced in both the 1940s and 1970s. As a result, the western Pacific subtropical high (WPSH) tended to extend westward with a larger magnitude in the 1970s. The major features were reasonably reproduced by an atmospheric general circulation model (IAP AGCM4.0) prescribed with observed SST and sea ice. On the other hand, the westward extension of the WPSH was exaggerated in the 1970s, while it was underestimated in the 1940s. Besides, the spatial pattern of the simulated summer rainfall in eastern China tended to shift southward compared with the observation.
基金National Key Program for Developing Basic Sciences (G1998040900(I)) Natural Natural Science Foundation of China (49975025)
文摘Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970’s, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.
基金supported by the National Natural Science Foundation of China (Grant No. 40810059005)
文摘Previous studies have shown that meridional displacement of the East Asian upper-tropospheric jet stream (EAJS) dominates interannual variability of the EAJS in the summer months.This study investigates the tropical Pacific sea surface temperature (SST) anomalies associated with meridional displacement of the monthly EAJS during the summer.The meridional displacement of the EAJS in June is significantly associated with the tropical central Pacific SST anomaly in the winter of previous years,while displacements in July and August are related to tropical eastern Pacific SST anomalies in the late spring and concurrent summer.The EAJS tends to shift southward in the following June (July and August) corresponding to a warm SST anomaly in the central (eastern) Pacific in the winter (late spring-summer).The westerly anomaly south of the Asian jet stream is a result of tropical central Pacific warm SST anomaly-related warming in the tropical troposphere,which is proposed as a possible reason for southward displacement of the EAJS in June.The late spring-summer warm SST anomaly in the tropical eastern Pacific,however,may be linked to southward displacement of the EAJS in July and August through a meridional teleconnection over the western North Pacific (WNP) and East Asia.
基金jointly supported by the Ministry of Science and Technology of China,through the National Basic Research Program of China(Grant No.2012CB955602)the National Natural Science Foundation of China(Grant Nos.41575077,41490643 and 41275094)+1 种基金a project funded by the PAPD(Priority Academic Program Development of Jiangsu Higher Education Institutions)supported by the Innovation Project for Graduate Student of Jiangsu Province(Grant No.KYLX15-0860)
文摘This study concerns atmospheric responses to the North Pacific subtropical front (NPSTF) in boreal spring over the period 1982-2014. Statistical results show that a strong NPSTF in spring can significantly enhance the East Asian jet stream (EAJS). Both transient eddy activity and the atmospheric heat source play important roles in this process. The enhanced atmospheric temperature gradient due to a strong NPSTF increases atmospheric baroclinicity, resulting in an intensification of transient eddy and convection activities. On the one hand, the enhanced transient eddy activities can excite an anomalous cyclonic circulation with a quasi-baraotropical structure in the troposphere to the north of the NPSTF. Accordingly, the related westerly wind anomalies around 30°N can intensify the component of the EAJS over the Northeast Pacific. On the other hand, an enhanced atmospheric heat source over the NPSTF, which is related to increased rainfall, acts to excite an anomalous cyclonic circulation system in the troposphere to the northwest of the NPSTF, which can explain the enhanced component of the EAJS over the Northwest Pacific. The two mechanisms may combine to enhance the EAJS.
基金the National Natural Science Foundation of China(Grant Nos.41905055 and 41721004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190500)the Fundamental Research Funds for the Central Universities(Grant No.B200202145).
文摘This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity.
文摘After tobacco use, chronic hepatitis B(CHB) viral infections are the most important cause of cancer globally in that 1 out of 3 individuals have been infected with the hepatitis B virus(HBV). Though infection rates are low(< 1%) in the United States, Asian Americans who comprise about 6% of the population experience about 60% of the CHB burden. This paper reviews the magnitude of hepatitis B(HBV) burden among Asian Americans and the progress being made to mitigate this burden, primarily through localized, communitybased efforts to increase screening and vaccination among Asian American children, adolescents, and adults. This review brings to light that despite the numerous community-based screening efforts, a vast majority of Asian Americans have not been screened and that vaccination efforts, particularly for adults, are sub-optimal. Greater efforts to integrate screenings by providers within existing healthcare systems are urged. Evidence-based strategies are offered to implement CDC's three major recommendations to control and prevent hepatitis B through targeted screening and enhanced vaccination efforts.
基金supported by the National Basic Research Program of China (2009CB421407)the Special Fund for Public Welfare Industry(meteorology)(GYHY200906018)the National Natural Science Foundation of China(90711004 and 40921003)
文摘The linkage between the Asian-Pacific oscillation (APO) and the precipitation over central eastern China in spring is preliminarily addressed by use of the observed data. Results show that they correlate very well, with the positive (negative) phase of APO tending to increase (decrease) the precipitation over central eastern China. Such a relationship can be explained by the atmospheric circulation changes over Asia and the North Pacific in association with the anomalous APO. A positive phase of APO, characterized by a positive anomaly over Asia and a negative anomaly over the North Pacific in the upper-tropospheric temperature, corresponds to decreased low-level geopotential height (H) and increased high-level H over Asia, and these effects are concurrent with increased low-level H and decreased high-level H over the North Pacific. Meanwhile, an anticyclonic circulation anomaly in the upper troposphere and a cyclonic circulation anomaly in the lower troposphere are introduced in East Asia, and the low-level southerly wind is strengthened over central eastern China. These changes provide advantageous conditions for enhanced precipitation over central eastern China. The situation is reversed in the negative phase of APO, leading to reduced precipitation in this region.
基金supported by Shenzhen Research Project(Grant No.GJHS20120820144245169)the French/Hong Kong Joint Research Project(No.F-HK002/12T)
文摘Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature (SAT) variations north of 40°N in the EAWM region. Second, the well-known western Pacific teleconnection index (WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode (NTM) and the southern temperature mode (STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI-NTM and WPI-STM relationships are robust when the correlation analysis is repeated by (1) the 31-year running correlation and (2) the 8-year high-pass and low-pass filter. Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. Int particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.
文摘Using monthly mean National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data for the period 1958-1996, based on a new circulation index in the tropical western Pacific region, this paper investigates extreme winter circulation conditions in the northwestern Pacific and their evolution. The results show that the extreme winter circulation anomaly in the northwestern Pacific exhibits a strong association with those appearing in the high latitudes of the Northern Hemisphere including the northern Asian continent, part of the Barents Sea, and the northeastern Pacific. As the season progresses, an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific gradually moves northeastwards and extends westwards. Its axis in the west-east direction is also stretched. Therefore, easterly (westerly) anomalies in the southern part of the anticyclonic (cyclonic) circulation anomaly continuously expand westwards to the peninsula of India. Therefore, the South Asian summer monsoon would be weaker (stronger). Simultaneously, another interesting phenomenon is the evolution of SLP anomalies. As the season progresses (from winter to the following summer), SLP anomalies originating from the tropical western Pacific gradually move towards, and finally occupy the Asian continent, and further influence the thermal depression over the Asian continent in the following summer.
文摘A GCM study is performed of the effects on Asian summer monsoon initiation of the Qinghai-Xizang Plateauand western Pacific warm pool. results show that the Plateau, being a prominent sensible heat source, acts as a basicfactor for the formation of the monsoon circulation, the northward transported low-latitude and low-level warm,moist flow in relation to the sensible heating experiences dynamic lifting on the south and east sides of the highland,releasing vast quantities of latent heat through condensation, whereby the monsoon circulation pattern is furthermodulated; the temperature contrast between the Pacific warm pool and the Australian / marine continents serves asanother basic factor for the northern SW summer monsoon genesis over the South-China Sea-the western Pacific,which, however, falls into a category of winter monsoon on a physical basis.
基金supported by the National Basic Research Program of China(Grant No.2009CB421401)the Research Council of Norway through the DecCen project(Exploring Decadal to Century Scale Variability and Changes in the East Asian Climate during the last Millennium)
文摘This study discusses the potential contribution of the Pacific decadal oscillation(PDO)to the weakening of the East Asian summer monsoon(EASM)and the evident correlation between the positive PDO and"Southern flood and Northern drought(SFND)"summer rainfall pattern over East China.The mechanism behind this contribution is also discussed.
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)Natural Science Foundation of Fujian Province(2014J01146)
文摘Based on the 1961-2010 NCEP/NCAR reanalysis, this work uses empirical orthogonal function(EOF) and composite analysis to study the distributions of zonal land-sea thermal contrast between Asia and the Pacific during transitions from the summer monsoon to the winter monsoon in East Asian subtropics, and investigates the interannual variations of the thermal contrast and their relationships with circulation systems over the East Asian subtropics. The findings are as follows. 1) In autumn, the interannual variations of the temperature deviation in the middle and upper troposphere show significant east-west out-of-phase teleconnection over Asia and the central and eastern Pacific, i.e. the Asian-Pacific Oscillation, or APO. 2) While not as significant as in summer with regard to coverage and intensity, the APO shows interannual variations in autumn that well depicts the change in the intensity of the subtropical monsoon. In the high(low) APO year, the current subtropical summer monsoon is strong(weak) and the winter monsoon is weak(strong) in East Asia as derived from the general circulation and wind field of the East Asian-Pacific region.
基金jointly supported by the State Key Program of the National Natural Science of China(Grant No.41130963)the National Natural Science Foundation of China(Grant No.41575071)
文摘The summer Asian-Pacific Oscillation (APO) is a major teleconnection pattern that reflects the zonal thermal contrast between East Asia and the North Pacific in the upper troposphere. The performance of Beijing Climate Center Climate System Models (BCC_CSMs) with different horizontal resolutions, i.e., BCC_CSM1.1 and BCC_CSM1.1 (m), in reproducing APO interannual variability, APO-related precipitation anomalies, and associated atmospheric circulation anomalies, is evaluated. The results show that BCC_CSMI.I(m) can successfully capture the interannual variability of the summer APO index. It is also more capable in reproducing the APO's spatial pattern, compared to BCC_CSMI.1, due to its higher horizontal resolution. Associated with a positive APO index, the northward-shifted and intensified South Asian high, strengthened extratropical westerly jet, and tropical easterly jet in the upper troposphere, as well as the southwesterly monsoonal flow over North Africa and the Indian Ocean in the lower troposphere, are realistically represented by BCC_CSM1.1 (m), leading to an improvement in reproducing the increased precipitation over tropical North Africa, South Asia, and East Asia, as well as the decreased precipitation over subtropical North Africa, Japan, and North America. In contrast, these features are less consistent with observations when simulated by BCC_CSM1.1. Regression analysis further indicates that surface temperature anomalies over the North Pacific and the southern and western flanks of the Tibetan Plateau are reasonably reproduced by BCC_CSM 1.1 (m), which contributes to the substantial improvement in the simulation of the characteristics of summer APO compared to that of BCC_CSM1.1.
基金funded by the National Natural Science Foundation of China (No.41210008)the Major State Basic Research Development Program of China (973 Program No.2014CB953701)。
文摘The dust storms from the continent usually affect the abundance and diversity of planktons by supplying trace elements. As such, the response of heterotrophic planktonic bacteria to dusts, nutrients(i.e., nitrogen and phosphorus) or ferrous dosages was investigated in the Kuroshio Extension region of the Northwest Pacific Ocean(NWPO) through on-board incubation experiments during an oceanographic survey in spring 2014. The flow cytometry and 16S rRNA high-throughput sequencing methods were applied to explore the abundance and community structure of bacteria, and the percentage of high nucleic acid bacteria(HNA%). The results showed that the heterotrophic bacteria abundance was low(average 2.55×10^5 cells mL^-1) and subjected to both nitrogen(N) and ferrous(Fe) limitation. Sand-dust deposition observably promoted the activity of heterotrophic planktonic bacteria. The maximum abundance of heterotrophic bacteria was 6.98×10^5 cells mL^-1 in the dust-dosage group, which was 44% higher than the control(P < 0.05). The HNA% in the dust-dosage group was 1.37 times higher than the control(P < 0.05). The activation mechanism was mainly related to the dissolution of N and Fe in the dusts. The relative abundance of genus Winogradskyella was significantly increased by dust deposition while the relative abundance of the genera Tenacibaculum and Hyphomonas was decreased. These variations of bacterial community structure were ascribed to the dissolution of nutrients N and P. Comparing the results of different experimental groups, this study concluded that dust storm improved the abundance of heterotrophic bacteria by dissolution of N and Fe.
基金A project in the Natural Science Foundation of China (40375019) a key project in the Natural Science Foundation of China (40135020)
文摘Based on the wavelet packet decomposition/reconstruction method and the NCEP/NCAR daily reanalysis data set, the relation between the south Asian summer monsoon and the west Pacific subtropical high seasonal variation was discussed, and a corresponding summer monsoon frequency-band energy criterion was defined and introduced for diagnosing the west Pacific subtropical high. Besides, some existing characteristics and rules about the west Pacific subtropical high were further argued and proofed, a few new phenomena and correlation between the south Asian summer monsoon and the west Pacific subtropical high were also revealed and presented.
基金The National Natural Science Foundation of China under contract No.41275060the National Key Basic Research Program of China under contract No.2014CB953903+2 种基金the National Basic Research Program of China under contract No.2011CB403500the Fundamental Re-search Funds for the Central Universities of China under contract No.13lgjc03the National Natural Science Foundation of China under contract No.41275145
文摘The three-dimensional structure of precipitation on a seasonal scale in the Asian-Pacific's three monsoon regions is investigated based on the tropical rainfall measurement mission (TRMM) data. The results show that: (1) The maximum seasonal variation of the relative proportional difference of convective precipitation and stratiform rain occurs in the East Asian monsoon region, the second occurs in the Indian monsoon region, and the minimum is in the northwest Pacific monsoon region. In both the northwest Pacific mon soon region and the Indian monsoon region, the convective rain is proportionately larger than stratiform rain in all four seasons. (2) Cloud ice reaches its maximum at around 9 km. Cloud water's maximum range is between 3 and 4 km. The large value area of precipitation ice is mainly between 4 and 9 km. The precipi tation water particle is concentrated mostly below 4 km. The largest content is from the ground to 2 km. (3) The most remarkable variance of the content of cloud ice in the Indian monsoon region occurs from spring to winter, and the content of cloud water in the northwest Pacific is always higher than that in the other two regions. (4) The latent heat profile has a similar double-peak structure. The first peak is at 4 km and the second peak is at 2 km. In autumn and winter, the latent heat is higher in the northwest Pacific than in other two regions. In all three regions, the release of the latent heat is higher in summer and autumn than in spring and winter.