Based on TBB data from GMS of Japan,NCEP/NCAR reanalysis data and precipitation data from CMAP(CPC Merged Analysis of Precipitation),an investigation is carried out of seasonal changes of precipitation and convection ...Based on TBB data from GMS of Japan,NCEP/NCAR reanalysis data and precipitation data from CMAP(CPC Merged Analysis of Precipitation),an investigation is carried out of seasonal changes of precipitation and convection over Asian-Australian 'land bridge' areas and its possible factors.The results show that the precipitation and convection over Sumatra take on clearly seasonal changes with abundant (less) rainfall in winter (summer).The convection over Sumatra moves northwestward rapidly along 'land bridge' in the late-April and the early-May (the 25th pentad) and the rainfall shows similar variations.It is the accelerating of the convection moving that affects directly the subsequent enhancement of the convection over Indo-China Peninsula (ICP) area followed by the rupture of the subtropical high (SH) bands in this region leading to South China Sea (SCS) summer monsoon establishment.The zonal wind at lower troposphere in the equatorial Indian Ocean and the cross-equatorial flow in 105~E are the main factors associated with the accelerating of the convection moving northwestward along 'land bridge'.The further study suggests that the intensity of Sumatra convection has a close relation to the SST:when the central-east equatorial Pacific SST is warmer (colder),i.e.E1 Nino (La Nina) events,the SST in West Pacific warm pool is colder (warmer),Sumatra convection is weaker (stronger).展开更多
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summ...The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.展开更多
基金supported by the National Natural Science Foundation of China (No.40305005 and N0.40135020)
文摘Based on TBB data from GMS of Japan,NCEP/NCAR reanalysis data and precipitation data from CMAP(CPC Merged Analysis of Precipitation),an investigation is carried out of seasonal changes of precipitation and convection over Asian-Australian 'land bridge' areas and its possible factors.The results show that the precipitation and convection over Sumatra take on clearly seasonal changes with abundant (less) rainfall in winter (summer).The convection over Sumatra moves northwestward rapidly along 'land bridge' in the late-April and the early-May (the 25th pentad) and the rainfall shows similar variations.It is the accelerating of the convection moving that affects directly the subsequent enhancement of the convection over Indo-China Peninsula (ICP) area followed by the rupture of the subtropical high (SH) bands in this region leading to South China Sea (SCS) summer monsoon establishment.The zonal wind at lower troposphere in the equatorial Indian Ocean and the cross-equatorial flow in 105~E are the main factors associated with the accelerating of the convection moving northwestward along 'land bridge'.The further study suggests that the intensity of Sumatra convection has a close relation to the SST:when the central-east equatorial Pacific SST is warmer (colder),i.e.E1 Nino (La Nina) events,the SST in West Pacific warm pool is colder (warmer),Sumatra convection is weaker (stronger).
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.40305005 and 40225012)the National Key Program for Developing Basic Sciences(Grant No.2004CB418302).
文摘The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.