The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using...The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using retrospective prediction datasets from the seasonal forecasting models in four operational centers worldwide.Results show that the model predictability of the leading AAM modes is sensitive to how they are defined in different seasonal sequences,especially for the second mode.The first AAM mode,from various seasonal sequences,coincides with the El Niño phase transition in the eastern-central Pacific.The second mode,initialized from boreal summer and autumn,leads El Niño by about one year but can exist during the decay phase of El Niño when initialized from boreal winter and spring.Our findings hint that ENSO,as an early signal,is conducive to better performance of model predictions in capturing the spatiotemporal variations of the leading AAM modes.Still,the persistence barrier of ENSO in spring leads to poor forecasting skills of spatial features.The multimodel ensemble(MME)mean shows some advantage in capturing the spatiotemporal variations of the AAM modes but does not provide a significant improvement in predicting its temporal features compared to the best individual models in predicting its temporal features.The BCC_CSM1.1M shows promising skill in predicting the two AAM indices associated with two leading AAM modes.The predictability demonstrated in this study is potentially useful for AAM prediction in operational and climate services.展开更多
Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are ...Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime "great moisture river" pattern (named the GMR pattern) and its eastward expansion, associated with a series of climatological events which occurred in some "key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in "key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.展开更多
Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of ...Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for the period 1979-2003. The first mode is associated with the turnabout of warming (cooling) in the Nifio 3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory conditions for ENSO. We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily able to capture major features of the two observed leading modes of the IAV, with the first mode better predicted than the second. It also depicts the relationship between the first mode and ENSO rather well. On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and ENSO. We conclude: (1) successful reproduction of the E1 Nifio-excited monsoon-ocean interaction and E1 Nifio forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2) more efforts are needed to improve the simulation not only in the Nifio 3.4 region but also in the joining area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and associated seasonal prediction skill.展开更多
Based on TBB data from Meteorological Institute Research of Japan, study is carried out of the features of seasonal transition of Asian-Australian monsoons and Asian summer monsoon establishment,indicating that the tr...Based on TBB data from Meteorological Institute Research of Japan, study is carried out of the features of seasonal transition of Asian-Australian monsoons and Asian summer monsoon establishment,indicating that the transition begins as early as in April, followed by abrupt change in May-June; the Asian summer monsoon situation is fully established in June. The winter convective center in Sumatra moved steadily northwestward across the "land bridge" of the maritime continent and the Indo-China Peninsula as time goes from winter to summer, thus giving rise to the change in large scale circulations that is responsible for the summer monsoon establishment over SE Asia and India; the South China Sea to the western Pacific summer monsoon onset bears a close relation to the active convection in the Indo China Peninsula and steady eastward retreat of the subtropical TBB high-value band,corresponding to the western Pacific subtropical high.展开更多
The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface te...The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.展开更多
As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer mons...As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.展开更多
The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end ...The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end of the cyclothem after the eustatic minimum, contain evidence for very high seasonal discharges related to strong monsoon rainfall in the catchment areas. In some channels, intense turbulence near the delta front, led to knick point recession and deep incision. These channels were filled with sediments during reduced discharge, including very large sets of cross-bedding up to 16 m thick. Channels were short-lived with frequent avulsions. Over time slightly lower discharges formed laterally migrating channels dominated by bar forms. Different discharge-controlled processes operated on the reactivated delta slope. Incised channels generated turbidity currents during floods which transported sediments directly into the basin far from the delta. Migrating channels built mouth bars;resedimentation during floods formed density currents which then deposited sediment on the lower parts of the slope.展开更多
Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area...Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.展开更多
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u...The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.展开更多
The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability...The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.展开更多
Predominantly in the context of Japan GMS-derived T_(BB) data,study is undertaken of the relationship between the winter thermal conditions of the Qinghai-Xizang Plateau(QXP)and anomaly in Asian-Australian monsoons du...Predominantly in the context of Japan GMS-derived T_(BB) data,study is undertaken of the relationship between the winter thermal conditions of the Qinghai-Xizang Plateau(QXP)and anomaly in Asian-Australian monsoons during northern summer.Evidence suggests that anti- correlation of cold air activity of East Asia with that of Mid Asia is responsible for the counterpart of the ground thermal characteristics anomaly on an interannual basis between the SW and NE QXP;the winter thermal pattern bears a closer correlativity with the subsequent summertime Asian-Australian monsoons anomaly;as the thermal distribution is reversed,so are the convection features over North and South China,maritime continent,the NW and SW Pacific at tropical and equatorial latitudes,resulting in vast difference between East-Asian summer and Indonesian-North Australian winter monsoons;the subtropical monsoon-associated rainbelt over the mid-lower Changjiang basins exhibits the discrepancy in vigor and northerly shift timing.Besides,part of the results has been further borne out through analysis of temperature and precipitation records of the eastern portion of the country in monsoon climate.展开更多
Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon ...Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed, Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of she latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres), and the subsequent onset of South China Sea summer monsoon are emphasized.展开更多
Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field i...Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.展开更多
This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A ...This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.展开更多
The future changes in the relationship between the South Asian summer monsoon(SASM)and the East Asian summer monsoon(EASM)are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5(SSP5-8.5)experi...The future changes in the relationship between the South Asian summer monsoon(SASM)and the East Asian summer monsoon(EASM)are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5(SSP5-8.5)experiments from 26 coupled models that participated in the phase 6 of the Coupled Model Intercomparison Project(CMIP6).Six models,selected based on their best performance in simulating the upper-and lower-level pathways related to the SASM-EASM teleconnection in the historical run,can capture the positive relationship between the SASM and the rainfall over northern China.In the future scenario,the upper-level teleconnection wave pattern connecting the SASM and the EASM exhibits a significant weakening trend,due to the rainfall anomalies decrease over the northern Indian Peninsula in the future.At the lower level,the western North Pacific anticyclone is projected to strengthen in the warming climate.The positive(negative)rainfall anomalies associated with positive(negative)SASM rainfall anomalies are anticipated to extend southward from northern China to the Yangtze-Huai River valley,the Korea Peninsula,and southern Japan.The connection in the lower-level pathway may be strengthened in the future.展开更多
The East Asian Summer Monsoon(EASM)provides the majority of annual rainfall to countries in East Asia.Although state-of-the-art models broadly project increased EASM rainfall,the spread of projections is large and sim...The East Asian Summer Monsoon(EASM)provides the majority of annual rainfall to countries in East Asia.Although state-of-the-art models broadly project increased EASM rainfall,the spread of projections is large and simulations of present-day rainfall show significant climatological biases.Systematic evapotranspiration biases occur locally over East Asia,and globally over land,in simulations both with and without a coupled ocean.This study explores the relationship between evapotranspiration and EASM precipitation biases.First,idealized model simulations are presented in which the parameterization of land evaporation is modified,while sea surface temperature is fixed.The results suggest a feedback whereby excessive evapotranspiration over East Asia results in cooling of land,a weakened monsoon low,and a shift of rainfall from the Philippine Sea to China,further fueling evapotranspiration.Cross-model regressions against evapotranspiration over China indicate a similar pattern of behavior in Atmospheric Model Intercomparison Project(AMIP)simulations.Possible causes of this pattern are investigated.The feedback is not explained by an overly intense global hydrological cycle or by differences in radiative processes.Analysis of land-only simulations indicates that evapotranspiration biases are present even when models are forced with prescribed rainfall.These are strengthened when coupled to the atmosphere,suggesting a role for land-model errors in driving atmospheric biases.Coupled atmosphere-ocean models are shown to have similar evapotranspiration biases to those in AMIP over China,but different precipitation biases,including a northward shift in the ITCZ over the Pacific and Atlantic Oceans.展开更多
An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes...An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes of this extreme monsoonal rainfall event in south China were analyzed and diagnosed. The results are shown as follows. A dominant South Asian high tended to be stable near the Qinghai-Tibet Plateau, providing favorable upper-level dispersion conditions for the occurrence of heavy rainfall in south China. A western Pacific subtropical high dominated the eastern part of the South China Sea, favoring stronger and more northward transport of water vapor to the northern part of south China at lower latitudes than normal. The continuous heavy precipitation event can be divided into two stages. The first stage(June 13-15) was the frontal heavy rainfall caused by cold air(brought by an East Asian trough)from the mid-latitudes that converged with a monsoonal airflow. The heavy rains occurred mostly in the area near a shear in front of the center of a synoptic-system-related low-level jet(SLLJ), and the jet stream and precipitation were strongest in the daytime. The second stage(June 16-21) was the warm-sector heavy rainfall caused by a South China Sea monsoonal low-level jet penetrating inland. The heavy rainfall occurred on the windward slope of the Nanling Mountains and in the northern part of a boundary layer jet(BLJ). The BLJ experienced five nighttime enhancements, corresponding well with the enhancement of the rainfall center, showing significant nighttime heavy rainfall characteristics. Finally, a conceptual diagram of inland-type warm-sector heavy rainfall in south China is summarized.展开更多
The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the e...The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the evolution of the El Niño-Southern Oscillation(ENSO).The possible linkage between the EZW over the western Pacific and the offequatorial monsoonal winds associated with the WNPSM and its decadal changes have not yet been fully understood.Here,we find a non-stationary relationship between the WNPSM and the western Pacific EZW,significantly strengthening their correlation around the late 1980s/early 1990s.This observed shift in the WNPSM–EZW relationship could be explained by the changes in the related sea surface temperature(SST)configurations across the tropical oceans.The enhanced influence from the springtime tropical North Atlantic,summertime tropical central Pacific,and maritime continent SST anomalies may be working together in contributing to the recent intensified WNPSM–EZW co-variability.The observed recent strengthening of the WNPSM–EZW relationship may profoundly impact the climate system,including prompting more effective feedback from the WNPSM on subsequent ENSO evolution and bolstering a stronger biennial tendency of the WNPSM–ENSO coupled system.The results obtained herein imply that the WNPSM,EZW,ENSO,and the tropical North Atlantic SST may be closely linked within a unified climate system with a quasi-biennial rhythm occurring during recent decades,accompanied by a reinforcement of the WNPSM–ENSO interplay quite possibly triggered by enhanced tropical Pacific–Atlantic cross-basin interactions.These results highlight the importance of the tropical Atlantic cross-basin influences in shaping the spatial structure of WNPSM-related wind anomalies and the WNPSM–ENSO interaction.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242206,41975094 and 41905062)the National Key Research and Development Program on monitoring,Early Warning and Prevention of Major Natural Disaster(Grant Nos.2017YFC1502302 and 2018YFC1506005)+1 种基金the Basic Research and Operational Special Project of CAMS(Grant No.2021Z007)the Met Office Climate Science for Service Partnership(CSSP)China.
文摘The dynamical prediction of the Asian-Australian monsoon(AAM)has been an important and long-standing issue in climate science.In this study,the predictability of the first two leading modes of the AAM is studied using retrospective prediction datasets from the seasonal forecasting models in four operational centers worldwide.Results show that the model predictability of the leading AAM modes is sensitive to how they are defined in different seasonal sequences,especially for the second mode.The first AAM mode,from various seasonal sequences,coincides with the El Niño phase transition in the eastern-central Pacific.The second mode,initialized from boreal summer and autumn,leads El Niño by about one year but can exist during the decay phase of El Niño when initialized from boreal winter and spring.Our findings hint that ENSO,as an early signal,is conducive to better performance of model predictions in capturing the spatiotemporal variations of the leading AAM modes.Still,the persistence barrier of ENSO in spring leads to poor forecasting skills of spatial features.The multimodel ensemble(MME)mean shows some advantage in capturing the spatiotemporal variations of the AAM modes but does not provide a significant improvement in predicting its temporal features compared to the best individual models in predicting its temporal features.The BCC_CSM1.1M shows promising skill in predicting the two AAM indices associated with two leading AAM modes.The predictability demonstrated in this study is potentially useful for AAM prediction in operational and climate services.
基金This research was supported by the National Natural Science Foundation of China(Nos.40475021 and 40375025)the Natural Science Foundation of Guangdong Province,China(No.0400391).
文摘Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime "great moisture river" pattern (named the GMR pattern) and its eastward expansion, associated with a series of climatological events which occurred in some "key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in "key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.
基金the support of the National Natural Science Foundation of China(Grant Nos.40523001 and 40605022)the Chinese Acadiemy of the International Partnership Creative Group entitled"Climate System Model Development and Application Studies".
文摘Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for the period 1979-2003. The first mode is associated with the turnabout of warming (cooling) in the Nifio 3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory conditions for ENSO. We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily able to capture major features of the two observed leading modes of the IAV, with the first mode better predicted than the second. It also depicts the relationship between the first mode and ENSO rather well. On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and ENSO. We conclude: (1) successful reproduction of the E1 Nifio-excited monsoon-ocean interaction and E1 Nifio forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2) more efforts are needed to improve the simulation not only in the Nifio 3.4 region but also in the joining area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and associated seasonal prediction skill.
文摘Based on TBB data from Meteorological Institute Research of Japan, study is carried out of the features of seasonal transition of Asian-Australian monsoons and Asian summer monsoon establishment,indicating that the transition begins as early as in April, followed by abrupt change in May-June; the Asian summer monsoon situation is fully established in June. The winter convective center in Sumatra moved steadily northwestward across the "land bridge" of the maritime continent and the Indo-China Peninsula as time goes from winter to summer, thus giving rise to the change in large scale circulations that is responsible for the summer monsoon establishment over SE Asia and India; the South China Sea to the western Pacific summer monsoon onset bears a close relation to the active convection in the Indo China Peninsula and steady eastward retreat of the subtropical TBB high-value band,corresponding to the western Pacific subtropical high.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant Nos.42275006 and 42030604)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011705)the Science and Technology Research Project for Society of Foshan(Grant No.2120001008761).
文摘The Pearl River Delta(PRD),a tornado hotspot,forms a distinct trumpet-shaped coastline that concaves toward the South China Sea.During the summer monsoon season,low-level southwesterlies over the PRD’s sea surface tend to be turned toward the west coast,constituting a convergent wind field along with the landward-side southwesterlies,which influences regional convective weather.This two-part study explores the roles of this unique land–sea contrast of the trumpet-shaped coastline in the formation of a tornadic mesovortex within monsoonal flows in this region.Part I primarily presents observational analyses of pre-storm environments and storm evolutions.The rotating storm developed in a lowshear environment(not ideal for a supercell)under the interactions of three air masses under the influence of the land–sea contrast,monsoon,and storm cold outflows.This intersection zone(or“triple point”)is typically characterized by local enhancements of ambient vertical vorticity and convergence.Based on a rapid-scan X-band phased-array radar,finger-like echoes were recognized shortly after the gust front intruded on the triple point.Developed over the triple point,they rapidly wrapped up with a well-defined low-level mesovortex.It is thus presumed that the triple point may have played roles in the mesovortex genesis,which will be demonstrated in Part II with multiple sensitivity numerical simulations.The findings also suggest that when storms pass over the boundary intersection zone in the PRD,the expected possibility of a rotating storm occurring is relatively high,even in a low-shear environment.Improved knowledge of such environments provides additional guidance to assess the regional tornado risk.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2242203,42275006,and 42030604)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011705)the Science and Technology Research Project for Society of Foshan(2120001008761).
文摘As demonstrated in the first part of this study(Part I),wind-shift boundaries routinely form along the west coast of the Pearl River Delta due to the land-sea contrast of a“trumpet”shape coastline in the summer monsoon season.Through multiple numerical simulations,this article(Part II)aims to examine the roles of the trumpet-shaped coastline in the mesovortex genesis during the 1 June 2020 tornadic event.The modeling reproduced two mesovortices that are in close proximity in time and space to the realistic mesovortices.In addition to the modeled mesovortex over the triple point where strong ambient vertical vorticity was located,another mesovortex originated from an enhanced discrete vortex along an airmass boundary via shear instability.On the fine-scale storm morphology,finger-like echoes preceding hook echoes were also reproduced around the triple point.Results from sensitivity experiments suggest that the unique topography plays an essential role in modifying the vorticity budget during the mesovortex formation.While there is a high likelihood of an upcoming storm evolving into a rotating storm over the triple point,the simulation's accuracy is sensitive to the local environmental details and storm dynamics.The strengths of cold pool surges from upstream storms may influence the stretching of low-level vertically oriented vortex and thus the wrap-up of finger-like echoes.These findings suggest that the trumpet-shaped coastline is an important component of mesovortex production during the active monsoon season.It is hoped that this study will increase the situational awareness for forecasters regarding regional non-mesocyclone tornadic environments.
文摘The Roaches Grit in the UK Pennine Basin was a complex deep water deltaic sequence deposited during the Late Carboniferous glacial period. The channels of the upper part of the Roaches Grit, deposited towards the end of the cyclothem after the eustatic minimum, contain evidence for very high seasonal discharges related to strong monsoon rainfall in the catchment areas. In some channels, intense turbulence near the delta front, led to knick point recession and deep incision. These channels were filled with sediments during reduced discharge, including very large sets of cross-bedding up to 16 m thick. Channels were short-lived with frequent avulsions. Over time slightly lower discharges formed laterally migrating channels dominated by bar forms. Different discharge-controlled processes operated on the reactivated delta slope. Incised channels generated turbidity currents during floods which transported sediments directly into the basin far from the delta. Migrating channels built mouth bars;resedimentation during floods formed density currents which then deposited sediment on the lower parts of the slope.
基金supported by a Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030004)the Collaborative Observation and Multisource Real-time Data Fusion and Analysis Technology & Innovation team (Grant No.GRMCTD202103)the Foshan Special Project on Science and Technology in Social Field (Grant No.2120001008761)。
文摘Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.
基金supported by the National Natural Science Foundation of China(42161007)the Scientific Research Program for Higher Education Institutions of Gansu Province(2021B-081)the Natural Science Foundation of Gansu Province(22JR5RA074).
文摘The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.
基金supported by the National Natural Science Foundation of China[grant number 42275025]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2023084].
基金supported by the National Natural Science Foundation of China[grant numbers 41931181 and 42075048]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2022075]。
文摘The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.
基金Project of In-Situ Observation and Research of Qinghai-Xizang Air-Earth Physics.
文摘Predominantly in the context of Japan GMS-derived T_(BB) data,study is undertaken of the relationship between the winter thermal conditions of the Qinghai-Xizang Plateau(QXP)and anomaly in Asian-Australian monsoons during northern summer.Evidence suggests that anti- correlation of cold air activity of East Asia with that of Mid Asia is responsible for the counterpart of the ground thermal characteristics anomaly on an interannual basis between the SW and NE QXP;the winter thermal pattern bears a closer correlativity with the subsequent summertime Asian-Australian monsoons anomaly;as the thermal distribution is reversed,so are the convection features over North and South China,maritime continent,the NW and SW Pacific at tropical and equatorial latitudes,resulting in vast difference between East-Asian summer and Indonesian-North Australian winter monsoons;the subtropical monsoon-associated rainbelt over the mid-lower Changjiang basins exhibits the discrepancy in vigor and northerly shift timing.Besides,part of the results has been further borne out through analysis of temperature and precipitation records of the eastern portion of the country in monsoon climate.
基金the National Key Program for Developing Basic Sciences under Grant Nos. 2006CB403607 the National Natural Science Foundation of China under Grant Nos. 40305005 and 40135020.
文摘Based on summarizing previous achievements and characteristics of Asian summer monsoon and the role using data as long and new as possible, the onset of Asian-Australian "land bridge" in the onset of summer monsoon are further discussed. In particular, the earliest onset area of Asian summer monsoon is comparatively analyzed, and the sudden and progressive characteristics of the onset of summer monsoon in different regions are discussed, Furthermore, the relationships among such critical events during the onset of Asian summer monsoon as the splitting of subtropical high belt over the Bay of Bengal (BOB), the initiation of convection over Indo-China Peninsula, the westward advance, reestablishment of South Asian High, and the rapid northward progression of convection originated from Sumatra in early summer are studied. The important impact of the proper collocation of she latent heating over Indo-China Peninsula and the sensible heating over Indian Peninsula on the splitting of the subtropical high belt, the deepening of BOB trough, the activating of Sri Lanka vortex (twin vortexes in the Northern and Southern Hemispheres), and the subsequent onset of South China Sea summer monsoon are emphasized.
基金study was supported by the National Natural Science Foundation of China(Grant Nos.42230605 and 41721004).
文摘Studies of the multi-scale climate variability of the Asian monsoon are essential to an advanced understanding of the physical processes of the global climate system.In this paper,the progress achieved in this field is systematically reviewed,with a focus on the past several years.The achievements are summarized into the following topics:(1)the onset of the South China Sea summer monsoon;(2)the East Asian summer monsoon;(3)the East Asian winter monsoon;and(4)the Indian summer monsoon.Specifically,new results are highlighted,including the advanced or delayed local monsoon onset tending to be synchronized over the Arabian Sea,Bay of Bengal,Indochina Peninsula,and South China Sea;the basic features of the record-breaking mei-yu in 2020,which have been extensively investigated with an emphasis on the role of multi-scale processes;the recovery of the East Asian winter monsoon intensity after the early 2000s in the presence of continuing greenhouse gas emissions,which is believed to have been dominated by internal climate variability(mostly the Arctic Oscillation);and the accelerated warming over South Asia,which exceeded the tropical Indian Ocean warming,is considered to be the main driver of the Indian summer monsoon rainfall recovery since 1999.A brief summary is provided in the final section along with some further discussion on future research directions regarding our understanding of the Asian monsoon variability.
基金supported by the National Natural Science Foundation of China(Grant No.42275025).
文摘This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.
基金Guangdong Major Project of Basic and Applied Basic Research Foundation(2020B0301030004)National Natural Science Foundation of China(41975074)+2 种基金Guangdong Basic and Applied Basic Research Foundation(2023A1515010908)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021001)。
文摘The future changes in the relationship between the South Asian summer monsoon(SASM)and the East Asian summer monsoon(EASM)are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5(SSP5-8.5)experiments from 26 coupled models that participated in the phase 6 of the Coupled Model Intercomparison Project(CMIP6).Six models,selected based on their best performance in simulating the upper-and lower-level pathways related to the SASM-EASM teleconnection in the historical run,can capture the positive relationship between the SASM and the rainfall over northern China.In the future scenario,the upper-level teleconnection wave pattern connecting the SASM and the EASM exhibits a significant weakening trend,due to the rainfall anomalies decrease over the northern Indian Peninsula in the future.At the lower level,the western North Pacific anticyclone is projected to strengthen in the warming climate.The positive(negative)rainfall anomalies associated with positive(negative)SASM rainfall anomalies are anticipated to extend southward from northern China to the Yangtze-Huai River valley,the Korea Peninsula,and southern Japan.The connection in the lower-level pathway may be strengthened in the future.
基金supported by the UK–China Research and Innovation Partnership Fund, through the Met Office Climate Science for Service Partnership (CSSP) China, as part of the Newton Fund
文摘The East Asian Summer Monsoon(EASM)provides the majority of annual rainfall to countries in East Asia.Although state-of-the-art models broadly project increased EASM rainfall,the spread of projections is large and simulations of present-day rainfall show significant climatological biases.Systematic evapotranspiration biases occur locally over East Asia,and globally over land,in simulations both with and without a coupled ocean.This study explores the relationship between evapotranspiration and EASM precipitation biases.First,idealized model simulations are presented in which the parameterization of land evaporation is modified,while sea surface temperature is fixed.The results suggest a feedback whereby excessive evapotranspiration over East Asia results in cooling of land,a weakened monsoon low,and a shift of rainfall from the Philippine Sea to China,further fueling evapotranspiration.Cross-model regressions against evapotranspiration over China indicate a similar pattern of behavior in Atmospheric Model Intercomparison Project(AMIP)simulations.Possible causes of this pattern are investigated.The feedback is not explained by an overly intense global hydrological cycle or by differences in radiative processes.Analysis of land-only simulations indicates that evapotranspiration biases are present even when models are forced with prescribed rainfall.These are strengthened when coupled to the atmosphere,suggesting a role for land-model errors in driving atmospheric biases.Coupled atmosphere-ocean models are shown to have similar evapotranspiration biases to those in AMIP over China,but different precipitation biases,including a northward shift in the ITCZ over the Pacific and Atlantic Oceans.
基金National Natural Science Foundation of China(42075014)Science and Technology Key Project of Guangdong Meteorological Bureau(GRMC2020Z02,GRMCGS202101)+1 种基金Natural Science Foundation of Guangdong Province,China(2021A1515011539)Forecasters Project of China Meteorological Administration(CMAYBY2019-080)。
文摘An extreme monsoonal heavy rainfall event lasted for nine days and recurred in the interior of northern south China from June 13 to 21, 2022. Using regional meteorological stations and ERA5 reanalysis data, the causes of this extreme monsoonal rainfall event in south China were analyzed and diagnosed. The results are shown as follows. A dominant South Asian high tended to be stable near the Qinghai-Tibet Plateau, providing favorable upper-level dispersion conditions for the occurrence of heavy rainfall in south China. A western Pacific subtropical high dominated the eastern part of the South China Sea, favoring stronger and more northward transport of water vapor to the northern part of south China at lower latitudes than normal. The continuous heavy precipitation event can be divided into two stages. The first stage(June 13-15) was the frontal heavy rainfall caused by cold air(brought by an East Asian trough)from the mid-latitudes that converged with a monsoonal airflow. The heavy rains occurred mostly in the area near a shear in front of the center of a synoptic-system-related low-level jet(SLLJ), and the jet stream and precipitation were strongest in the daytime. The second stage(June 16-21) was the warm-sector heavy rainfall caused by a South China Sea monsoonal low-level jet penetrating inland. The heavy rainfall occurred on the windward slope of the Nanling Mountains and in the northern part of a boundary layer jet(BLJ). The BLJ experienced five nighttime enhancements, corresponding well with the enhancement of the rainfall center, showing significant nighttime heavy rainfall characteristics. Finally, a conceptual diagram of inland-type warm-sector heavy rainfall in south China is summarized.
基金This work was supported by the National Natural Science Foundation of China(Grant No:41776031)the National Key Research and Development Program of China(Grant 2018YFC1506903)+1 种基金the team project funding of scientific research innovation for universities in Guangdong province(Grant 2019KCXTF021)the program for scientific research start-up funds of Guangdong Ocean University(Grant R17051).
文摘The western North Pacific summer monsoon(WNPSM)is an important subcomponent of the Asian summer monsoon.The equatorial zonal wind(EZW)in the lower troposphere over the western Pacific may play a critical role in the evolution of the El Niño-Southern Oscillation(ENSO).The possible linkage between the EZW over the western Pacific and the offequatorial monsoonal winds associated with the WNPSM and its decadal changes have not yet been fully understood.Here,we find a non-stationary relationship between the WNPSM and the western Pacific EZW,significantly strengthening their correlation around the late 1980s/early 1990s.This observed shift in the WNPSM–EZW relationship could be explained by the changes in the related sea surface temperature(SST)configurations across the tropical oceans.The enhanced influence from the springtime tropical North Atlantic,summertime tropical central Pacific,and maritime continent SST anomalies may be working together in contributing to the recent intensified WNPSM–EZW co-variability.The observed recent strengthening of the WNPSM–EZW relationship may profoundly impact the climate system,including prompting more effective feedback from the WNPSM on subsequent ENSO evolution and bolstering a stronger biennial tendency of the WNPSM–ENSO coupled system.The results obtained herein imply that the WNPSM,EZW,ENSO,and the tropical North Atlantic SST may be closely linked within a unified climate system with a quasi-biennial rhythm occurring during recent decades,accompanied by a reinforcement of the WNPSM–ENSO interplay quite possibly triggered by enhanced tropical Pacific–Atlantic cross-basin interactions.These results highlight the importance of the tropical Atlantic cross-basin influences in shaping the spatial structure of WNPSM-related wind anomalies and the WNPSM–ENSO interaction.