Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin...Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.展开更多
With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after ...With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after the use of the item.The enormous increase in these reviews has raised the need for an automated system to analyze these reviews to rate these items.Sentiment Analysis(SA)is a technique that performs such decision analysis.This research targets the ranking and rating through sentiment analysis of these reviews,on different aspects.As a case study,Songs are opted to design and test the decision model.Different aspects of songs namely music,lyrics,song,voice and video are picked.For the reason,reviews of 20 songs are scraped from YouTube,pre-processed and formed a dataset.Different machine learning algorithms—Naïve Bayes(NB),Gradient Boost Tree,Logistic Regression LR,K-Nearest Neighbors(KNN)and Artificial Neural Network(ANN)are applied.ANN performed the best with 74.99%accuracy.Results are validated using K-Fold.展开更多
基金Science and Technology Innovation 2030‐“New Generation Artificial Intelligence”major project,Grant/Award Number:2020AAA0108703。
文摘Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.
文摘With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after the use of the item.The enormous increase in these reviews has raised the need for an automated system to analyze these reviews to rate these items.Sentiment Analysis(SA)is a technique that performs such decision analysis.This research targets the ranking and rating through sentiment analysis of these reviews,on different aspects.As a case study,Songs are opted to design and test the decision model.Different aspects of songs namely music,lyrics,song,voice and video are picked.For the reason,reviews of 20 songs are scraped from YouTube,pre-processed and formed a dataset.Different machine learning algorithms—Naïve Bayes(NB),Gradient Boost Tree,Logistic Regression LR,K-Nearest Neighbors(KNN)and Artificial Neural Network(ANN)are applied.ANN performed the best with 74.99%accuracy.Results are validated using K-Fold.